Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Protein phosphatase 2A has an essential role in the activation of γ-irradiation-induced G2/M checkpoint response

Abstract

G2/M checkpoint activation after DNA damage results in G2/M cell cycle arrest that allows time for DNA repair before the entry of cells into mitosis. Activation of G2/M checkpoint involves a series of signaling events, which include activation of ataxia telangiectecia-mutated and Rad3-related (ATR) and Chk1 kinases and inhibition of Cdc2/Cyclin B activity. Studies presented in this report show that serine (Ser)/threonine (Thr) protein phosphatase 2A (PP2A) has an important role in G2/M checkpoint activation in response to γ-irradiation (IR) exposure. Using PP2A inhibitors, as well as siRNA targeting various forms of Ser/Thr protein phosphatases, results presented in this report show that specific PP2A inhibition abrogates IR-induced activation of ATR and Chk1 kinases, as well as phosphorylation of Cdc2-Tyr15, and attenuates IR-induced G2/M arrest. These results suggest an important regulation of PP2A on IR-induced G2/M checkpoint signaling response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Ahn JY, Schwarz JK, Piwnica-Worms H, Canman CE . (2000). Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res 60: 5934–5936.

    CAS  PubMed  Google Scholar 

  • Ambach A, Saunus J, Konstandin M, Wesselborg S, Meuer SC, Samstag Y . (2000). The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur J Immunol 30: 3422–3431.

    Article  CAS  PubMed  Google Scholar 

  • Atherton-Fessler S, Parker LL, Geahlen RL, Piwnica-Worms H . (1993). Mechanisms of p34cdc2 regulation. Mol Cell Biol 13: 1675–1685.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Sanchez Y . (2004). Chk1 in the DNA damage response: conserved roles from yeasts to mammals. DNA Repair (Amst) 3: 1025–1032.

    Article  CAS  Google Scholar 

  • Cho US, Morrone S, Sablina AA, Arroyo JD, Hahn WC, Xu W . (2007). Structural basis of PP2A inhibition by small t antigen. PLoS Biol 5: e202.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chowdhury D, Keogh M-C, Ishii H, Peterson CL, Buratowski S, Lieberman J . (2005). [gamma]-H2AX Dephosphorylation by protein phosphatase 2A facilitates DNA Double-strand break repair. Molecular Cell 20: 801.

    Article  CAS  PubMed  Google Scholar 

  • Cohen P . (1991). Classification of protein-serine/threonine phosphatases: identification and quantitation in cell extracts. Methods Enzymol 201: 389–398.

    Article  CAS  PubMed  Google Scholar 

  • Cohen P . (1992). Signal integration at the level of protein kinases, protein phosphatases and their substrates. Trends Biochem Sci 17: 408–413.

    Article  CAS  PubMed  Google Scholar 

  • Cohen P, Klumpp S, Schelling DL . (1989). An improved procedure for identifying and quantitating protein phosphatases in mammalian tissues. FEBS Lett 250: 596–600.

    Article  CAS  PubMed  Google Scholar 

  • Cohen PTW . (2002). Protein phosphatase 1—targeted in many directions. J Cell Sci 115: 241–256.

    CAS  PubMed  Google Scholar 

  • Essmann F, Engels IH, Totzke G, Schulze-Osthoff K, Janicke RU . (2004). Apoptosis resistance of MCF-7 breast carcinoma cells to ionizing radiation is independent of p53 and cell cycle control but caused by the lack of caspase-3 and a caffeine-inhibitable event. Cancer Res 64: 7065–7072.

    Article  CAS  PubMed  Google Scholar 

  • Favre B, Turowski P, Hemmings BA . (1997). Differential inhibition and posttranslational modification of protein phosphatase 1 and 2A in MCF7 cells treated with calyculin-A, okadaic acid, and tautomycin. J Biol Chem 272: 13856–13863.

    Article  CAS  PubMed  Google Scholar 

  • Goodarzi AA, Jonnalagadda JC, Douglas P, Young D, Ye R, Moorhead GB et al. (2004). Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. Embo J 23: 4451–4461.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hall-Jackson CA, Cross DA, Morrice N, Smythe C . (1999). ATR is a caffeine-sensitive, DNA-activated protein kinase with a substrate specificity distinct from DNA-PK. Oncogene 18: 6707–6713.

    Article  CAS  PubMed  Google Scholar 

  • Iliakis G, Wang Y, Guan J, Wang H . (2003). DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22: 5834–5847.

    Article  CAS  PubMed  Google Scholar 

  • Jang Y-J, Ji J-H, Choi Y-C, Ryu CJ, Ko S-Y . (2007). Regulation of polo-like kinase 1 by DNA damage in mitosis: inhibition of mitotic plk-1 by protein phosphatase 2A. J Biol Chem' 282: 2473–2482.

    Article  CAS  Google Scholar 

  • Janssens V, Goris J . (2001). Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353: 417–439.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Janssens V, Goris J, Van Hoof C . (2005). PP2A: the expected tumor suppressor. Current Opinion in Genetics & Development 15: 34.

    Article  CAS  Google Scholar 

  • Janssens V, Longin S, Goris J . (2008). PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem Sci 33: 113.

    Article  CAS  PubMed  Google Scholar 

  • Jin P, Gu Y, Morgan DO . (1996). Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J Cell Biol 134: 963–970.

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Bartek J . (2004). Cell-cycle checkpoints and cancer. Nature 432: 316–323.

    Article  CAS  PubMed  Google Scholar 

  • Lee KM, Yasuda H, Hollingsworth MA, Ouellette MM . (2005). Notch 2-positive progenitors with the intrinsic ability to give rise to pancreatic ductal cells. Lab Invest 85: 1003–1012.

    Article  CAS  PubMed  Google Scholar 

  • Leung-Pineda V, Ryan CE, Piwnica-Worms H . (2006). Phosphorylation of Chk1 by ATR Is Antagonized by a Chk1-Regulated Protein Phosphatase 2A Circuit. Mol Cell Biol 26: 7529–7538.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li G, Elder RT, Qin K, Park HU, Liang D, Zhao RY . (2007a). Phosphatase Type 2A-dependent and -independent Pathways for ATR Phosphorylation of Chk1. J Biol Chem 282: 7287–7298.

    Article  CAS  PubMed  Google Scholar 

  • Li HH, Cai X, Shouse GP, Piluso LG, Liu X . (2007b). A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. Embo J 26: 402–411.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li HH, Li AG, Sheppard HM, Liu X . (2004). Phosphorylation on Thr-55 by TAF1 mediates degradation of p53: a role for TAF1 in cell G1 progression. Mol Cell 13: 867–878.

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K et al. (2000). Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14: 1448–1459.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X . (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147–157.

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ . (2000). Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 97: 10389–10394.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer-Jaekel RE, Hemmings BA . (1994). Protein phosphatase 2A—a ′menage a trois′. Trends Cell Biol 4: 287–291.

    Article  CAS  PubMed  Google Scholar 

  • McConnell JL, Wadzinski BE . (2009). Targeting protein serine/threonine phosphatases for drug development. Mol Pharmacol 75: 1249–1261.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagasawa H, Keng P, Maki C, Yu Y, Little JB . (1998). Absence of a radiation-induced first-cycle G1-S arrest in p53+ human tumor cells synchronized by mitotic selection. Cancer Res 58: 2036–2041.

    CAS  PubMed  Google Scholar 

  • O'Connell MJ, Cimprich KA . (2005). G2 damage checkpoints: what is the turn-on? J Cell Sci 118: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Pallas DC, Shahrik LK, Martin BL, Jaspers S, Miller TB, Brautigan DL et al. (1990). Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell 60: 167–176.

    Article  CAS  PubMed  Google Scholar 

  • Pankov R, Cukierman E, Clark K, Matsumoto K, Hahn C, Poulin B et al. (2003). Specific beta1 integrin site selectively regulates Akt/protein kinase B signaling via local activation of protein phosphatase 2A. J Biol Chem 278: 18671–18681.

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt HC, Yaffe MB . (2009). Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Current Opinion in Cell Biology 21: 245–255.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S . (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73: 39–85.

    Article  CAS  PubMed  Google Scholar 

  • Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM et al. (1999). Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59: 4375–4382.

    CAS  PubMed  Google Scholar 

  • Smits VA, Medema RH . (2001). Checking out the G(2)/M transition. Biochim Biophys Acta 1519: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Sontag E, Fedorov S, Kamibayashi C, Robbins D, Cobb M, Mumby M . (1993). The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell 75: 887–897.

    Article  CAS  PubMed  Google Scholar 

  • Strack S, Cribbs JT, Gomez L . (2004). Critical Role for Protein Phosphatase 2A Heterotrimers in Mammalian Cell Survival. Journal of Biological Chemistry 279: 47732–47739.

    Article  CAS  PubMed  Google Scholar 

  • Swingle M, Ni L, Honkanen RE . (2007). Small-molecule inhibitors of ser/thr protein phosphatases: specificity, use and common forms of abuse. Methods Mol Biol 365: 23–38.

    PubMed  PubMed Central  Google Scholar 

  • Takai A, Sasaki K, Nagai H, Mieskes G, Isobe M, Isono K et al. (1995). Inhibition of specific binding of okadaic acid to protein phosphatase 2A by microcystin-LR, calyculin-A and tautomycin: method of analysis of interactions of tight-binding ligands with target protein. Biochem J 306 (Pt 3): 657–665.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu B, Kastan MB . (2004). Analyzing cell cycle checkpoints after ionizing radiation. Methods Mol Biol 281: 283–292.

    CAS  PubMed  Google Scholar 

  • Xu B, Kim S, Kastan MB . (2001). Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 21: 3445–3450.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan Y, Black CP, Cowan KH . (2007). Irradiation-induced G2/M checkpoint response requires ERK1/2 activation. Oncogene 26: 4689–4698.

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Mumby MC . (1999). Distinct roles for PP1 and PP2A in phosphorylation of the retinoblastoma protein. PP2a regulates the activities of G(1) cyclin-dependent kinases. J Biol Chem 274: 31917–31924.

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Spieker RS, Kim M, Stoeger SM, Cowan KH . (2005). BRCA1-mediated G2/M cell cycle arrest requires ERK1/2 kinase activation. Oncogene 24: 3285–3296.

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Piwnica-Worms H . (2001). ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21: 4129–4139.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Michel Ouellette for providing HPNE cells, Dr Helen Piwnica Worms for GST-Cdc25C construct, Dr Charles Kuzynski, Victoria Smith and Megan Michalak for assistance on the flow cytometry analysis, and Dr Janina Baranowska-Kortylewicz for assistance on the operation of Mark I 68A Cesium-137 Irradiator. This work was supported by Nebraska DHHS-LB506 grant 2007-45 to YY, NCI Training Grant (NCI T32 CA009476) to RK and NCI Cancer Center Support Grant (P30CA036727) to KC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K H Cowan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Y., Cao, P., Greer, P. et al. Protein phosphatase 2A has an essential role in the activation of γ-irradiation-induced G2/M checkpoint response. Oncogene 29, 4317–4329 (2010). https://doi.org/10.1038/onc.2010.187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.187

Keywords

This article is cited by

Search

Quick links