Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mitogenic Sonic hedgehog signaling drives E2F1-dependent lipogenesis in progenitor cells and medulloblastoma

A Corrigendum to this article was published on 27 January 2011

Abstract

Deregulation of the Rb/E2F tumor suppressor complex and aberrantion of Sonic hedgehog (Shh) signaling are documented across the spectrum of human malignancies. Exaggerated de novo lipid synthesis is also found in certain highly proliferative, aggressive tumors. Here, we show that in Shh-driven medulloblastomas, Rb is inactivated and E2F1 is upregulated, promoting lipogenesis. Extensive lipid accumulation and elevated levels of the lipogenic enzyme fatty acid synthase (FASN) mark those tumors. In primary cerebellar granule neuron precursors (CGNPs), proposed Shh-associated medulloblastoma cells-of-origin, Shh signaling triggers E2F1 and FASN expression, whereas suppressing fatty acid oxidation (FAO), in a smoothened-dependent manner. In the developing cerebellum, E2F1 and FASN co-localize in proliferating CGNPs. in vivo and in vitro, E2F1 is required for FASN expression and CGNP proliferation, and E2F1 knockdown impairs Shh-mediated FAO inhibition. Pharmacological blockade of Rb inactivation and/or lipogenesis inhibits CGNP proliferation, drives medulloblastoma cell death and extends survival of medulloblastoma-bearing animals In vivo. These findings identify a novel mechanism through which Shh signaling links cell cycle progression to lipid synthesis, through E2F1-dependent regulation of lipogenic enzymes. These findings pertinent to the etiology of tumor metabolism also underscore the key role of the Shh→E2F1→FASN axis in regulating de novo lipid synthesis in cancers, and as such its value as a global therapeutic target in hedgehog-dependent and/or Rb-inactivated tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abrahamowicz M, Grodzicky T, Li Y, Panaritis C, du Berger R, Cjte R et al. (2001). APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. Arthritis Rheum 44: 2331–2337.

    Article  PubMed  Google Scholar 

  • Beachy PA, Karhadkar SS, Berman DM . (2004). Tissue repair and stem cell renewal in carcinogenesis. Nature 432: 324–331.

    Article  CAS  PubMed  Google Scholar 

  • Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN et al. (2002). Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297: 1559–1561.

    Article  CAS  PubMed  Google Scholar 

  • Bhatia B, Northcott PA, Hambardzumyan D, Govindarajan B, Brat DJ, Arbiser JL et al. (2009). Tuberous sclerosis complex suppression in cerebellar development and medulloblastoma: separate regulation of mammalian target of rapamycin activity and p27Kip1 localization. Cancer Res 69: 7224–7234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H et al. (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383: 407–413.

    Article  CAS  PubMed  Google Scholar 

  • Cooper-Kuhn CM, Vroemen M, Brown J, Ye H, Thompson MA, Winkler J et al. (2002). Impaired adult neurogenesis in mice lacking the transcription factor E2F1. Mol Cell Neurosci 21: 312–323.

    Article  CAS  PubMed  Google Scholar 

  • Corcoran RB, Scott MP . (2006). Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc Natl Acad Sci USA 103: 8408–8413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahmane N, Ruiz-i-Altaba A . (1999). Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126: 3089–3100.

    PubMed  Google Scholar 

  • DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S et al. (2007). Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Pro Natl Acad Sci USA 104: 19345–19350.

    Article  CAS  Google Scholar 

  • Djouadi F, Bonnefont JP, Munnich A, Bastin J . (2003). Characterization of fatty acid oxidation in human muscle mitochondria and myoblasts. Mol Genet Metab 78: 112–118.

    Article  CAS  PubMed  Google Scholar 

  • Dowell P, Hu Z, Lane MD . (2005). Monitoring energy balance: metabolites of fatty acid synthesis as hypothalamic sensors. Annu Rev Biochem 74: 515–534.

    Article  CAS  PubMed  Google Scholar 

  • Dynlacht BD, Moberg K, Lees JA, Harlow E, Zhu L . (1997). Specific regulation of E2F family members by cyclin-dependent kinases. Mole Cell Biol 17: 3867–3875.

    Article  CAS  Google Scholar 

  • Eberhart CG . (2008). Even cancers want commitment: lineage identity and medulloblastoma formation. Cancer Cell 14: 105–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez LA, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S et al. (2009). YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev 23: 2729–2741.

    Article  Google Scholar 

  • Ferretti E, Di Marcotullio L, Gessi M, Mattei T, Greco A, Po A et al. (2006). Alternative splicing of the ErbB-4 cytoplasmic domain and its regulation by hedgehog signaling identify distinct medulloblastoma subsets. Oncogene 25: 7267–7273.

    Article  CAS  PubMed  Google Scholar 

  • Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458: 762–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo D, Hildebrandt IJ, Prins RM, Soto H, Mazzotta MM, Dang J et al. (2009a). The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis. Proc Natl Acad Sci USA 106: 12932–12937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo D, Prins RM, Dang J, Kuga D, Iwanami A, Soto H et al. (2009b). EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal 2: ra82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A et al. (1996). Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85: 841–851.

    Article  CAS  PubMed  Google Scholar 

  • Hammerschmidt M, Bitgood MJ, McMahon AP . (1996). Protein kinase A is a common negative regulator of Hedgehog signaling in the vertebrate embryo. Genes Dev 10: 647–658.

    Article  CAS  PubMed  Google Scholar 

  • Hatton BA, Villavicencio EH, Tsuchiya KD, Pritchard JI, Ditzler S, Pullar B et al. (2008). The Smo/Smo model: hedgehog-induced medulloblastoma with 90% incidence and leptomeningeal spread. Cancer Res 68: 1768–1776.

    Article  CAS  PubMed  Google Scholar 

  • Helin K, Wu CL, Fattaey AR, Lees JA, Dynlacht BD, Ngwu C et al. (1993). Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative trans-activation. Genes Dev 7: 1850–1861.

    Article  CAS  PubMed  Google Scholar 

  • Hepker J, Wang QT, Motzny CK, Holmgren R, Orenic TV . (1997). Drosophila cubitus interruptus forms a negative feedback loop with patched and regulates expression of Hedgehog target genes. Development 124: 549–558.

    CAS  PubMed  Google Scholar 

  • Hernando E, Nahle Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M et al. (2004). Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430: 797–802.

    Article  CAS  PubMed  Google Scholar 

  • Ho KS, Scott MP . (2002). Sonic hedgehog in the nervous system: functions, modifications and mechanisms. Curr Opin Neurobiol 12: 57–63.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh MCF, Das D, Sambandam N, Zhang MQ, Nahle Z . (2008). Regulation of the PDK4 isozyme by the Rb-E2F1 complex. J Biol Chem 283: 27410–27417.

    Article  CAS  PubMed  Google Scholar 

  • Incardona JP, Eaton S . (2000). Cholesterol in signal transduction. Curr Opin Cell Biol 12: 193–203.

    Article  CAS  PubMed  Google Scholar 

  • Johnson DG, Ohtani K, Nevins JR . (1994). Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes Dev 8: 1514–1525.

    Article  CAS  PubMed  Google Scholar 

  • Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM et al. (1996). Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272: 1668–1671.

    Article  CAS  PubMed  Google Scholar 

  • Jones RG, Thompson CB . (2009). Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23: 537–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpen HE, Bukowski JT, Hughes T, Gratton JP, Sessa WC, Gailani MR . (2001). The sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane. J Biol Chem 276: 19503–19511.

    Article  CAS  PubMed  Google Scholar 

  • Kenney AM, Cole MD, Rowitch DH . (2003). Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130: 15–28.

    Article  CAS  PubMed  Google Scholar 

  • Kenney AM, Rowitch DH . (2000). Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol 20: 9055–9067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim EK, Miller I, Aja S, Landree LE, Pinn M, McFadden J et al. (2004). C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMP-activated protein kinase. J Biol Chem 279: 19970–19976.

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV . (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3: 177–185.

    Article  PubMed  Google Scholar 

  • Kimura H, Ng JM, Curran T . (2008). Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell 13: 249–260.

    Article  CAS  PubMed  Google Scholar 

  • Kolf-Clauw M, Chevy F, Wolf C, Siliart B, Citadelle D, Roux C . (1996). Inhibition of 7-dehydrocholesterol reductase by the teratogen AY9944: a rat model for Smith-Lemli-Opitz syndrome. Teratology 54: 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Landree LE, Hanlon AL, Strong DW, Rumbaugh G, Miller IM, Thupari JN et al. (2004). C75, a fatty acid synthase inhibitor, modulates AMP-activated protein kinase to alter neuronal energy metabolism. J Biol Chem 279: 3817–3827.

    Article  CAS  PubMed  Google Scholar 

  • Lees JA, Saito M, Vidal M, Valentine M, Look T, Harlow E et al. (1993). The retinoblastoma protein binds to a family of E2F transcription factors. Mole Cell Biol 13: 7813–7825.

    Article  CAS  Google Scholar 

  • Leung C, Lingbeek M, Shakhova O, Liu J, Tanger E, Saremaslani P et al. (2004). Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428: 337–341.

    Article  CAS  PubMed  Google Scholar 

  • Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD et al. (2000). Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288: 2379–2381.

    Article  CAS  PubMed  Google Scholar 

  • Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A . (2000). Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 14: 994–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCullough LD, Zeng Z, Li H, Landree LE, McFadden J, Ronnett GV . (2005). Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke. J Biol Chem 280: 20493–20502.

    Article  CAS  PubMed  Google Scholar 

  • Menendez JA . (2009). Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: molecular mechanisms and therapeutic perspectives. Biochim Biophys Acta.

  • Menendez JA, Lupu R . (2007). Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7: 763–777.

    Article  CAS  PubMed  Google Scholar 

  • Nahle Z, Polakoff J, Davuluri RV, McCurrach ME, Jacobson MD, Narita M et al. (2002). Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol 4: 859–864.

    Article  CAS  PubMed  Google Scholar 

  • Northcott PA, Fernandez LA, Hagan JP, Ellison DW, Grajkowska W, Gillespie Y et al. (2009). The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res 69: 3249–3255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak K, Kerl K, Fehr D, Kramps C, Gessner C, Killmer K et al. (2006). BMI1 is a target gene of E2F-1 and is strongly expressed in primary neuroblastomas. Nucleic Acids Res 34: 1745–1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver TG, Grasfeder LL, Carroll AL, Kaiser C, Gillingham CL, Lin SM et al. (2003). Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci USA 100: 7331–7336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson MV, Johnson DG, Jiang H, Xu J, Alonso MM, Aldape KD et al. (2007). Transgenic E2F1 expression in the mouse brain induces a human-like bimodal pattern of tumors. Cancer Res 67: 4005–4009.

    Article  CAS  PubMed  Google Scholar 

  • Orita H, Coulter J, Lemmon C, Tully E, Vadlamudi A, Medghalchi SM et al. (2007). Selective inhibition of fatty acid synthase for lung cancer treatment. Clin Cancer Res 13: 7139–7145.

    CAS  PubMed  Google Scholar 

  • Orita H, Coulter J, Tully E, Kuhajda FP, Gabrielson E . (2008). Inhibiting fatty acid synthase for chemoprevention of chemically induced lung tumors. Clin Cancer Res 14: 2458–2464.

    Article  CAS  PubMed  Google Scholar 

  • Parathath SR, Mainwaring LA, Fernandez LA, Campbell DO, Kenney AM . (2008). Insulin receptor substrate 1 is an effector of sonic hedgehog mitogenic signaling in cerebellar neural precursors. Development 135: 3291–3300.

    Article  CAS  PubMed  Google Scholar 

  • Platt KA, Michaud J, Joyner AL . (1997). Expression of the mouse Gli and Ptc genes is adjacent to embryonic sources of hedgehog signals suggesting a conservation of pathways between flies and mice. Mech Dev 62: 121–135.

    Article  CAS  PubMed  Google Scholar 

  • Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA et al. (2002). E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 16: 245–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamaki T, Casimiro MC, Ju X, Quong AA, Katiyar S, Liu M et al. (2006). Cyclin D1 determines mitochondrial function in vivo. Mol Cell Biol 26: 5449–5469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjostrom SK, Finn G, Hahn WC, Rowitch DH, Kenney AM . (2005). The cdk1 complex plays a prime role in regulating N-myc phosphorylation and turnover in neural precursors. Dev Cell 9: 327–338.

    Article  CAS  PubMed  Google Scholar 

  • Suh JM, Gao X, McKay J, McKay R, Salo Z, Graff JM . (2006). Hedgehog signaling plays a conserved role in inhibiting fat formation. Cell Metab 3: 25–34.

    Article  CAS  PubMed  Google Scholar 

  • Teglund S, Toftgard R . (2010). Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta 1805: 181–208.

    CAS  PubMed  Google Scholar 

  • Thupari JN, Kim E-K, Moran TH, Ronnett GV, Kuhajda FP . (2004). Chronic C75 treatment of diet-induced obese mice increases fat oxidation and reduces food intake to reduce adipose mass. Am J Physiol Endocrinol Metab 287: E97–E104.

    Article  CAS  PubMed  Google Scholar 

  • Thupari JN, Landree LE, Ronnett GV, Kuhajda FP . (2002). C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity. Pro Natl Acad Sci USA 99: 9498–9502.

    Article  CAS  Google Scholar 

  • Tong X, Zhao F, Thompson CB . (2009). The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr Opin Genet Dev 19: 32–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uziel T, Karginov FV, Xie S, Parker JS, Wang YD, Gajjar A et al. (2009). The miR-1792 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci USA 106: 2812–2817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wechsler-Reya R, Scott MP . (2001). The developmental biology of brain tumors. Annu Rev Neurosci 24: 385–428.

    Article  CAS  PubMed  Google Scholar 

  • Wechsler-Reya RJ, Scott MP . (1999). Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog [see comments]. Neuron 22: 103–114.

    Article  CAS  PubMed  Google Scholar 

  • Wetmore C . (2003). Sonic hedgehog in normal and neoplastic proliferation: insight gained from human tumors and animal models. Curr Opin Genet Dev 13: 34–42.

    Article  CAS  PubMed  Google Scholar 

  • Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al. (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105: 18782–18787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yauch RL, Dijkgraaf GJ, Alicke B, Januario T, Ahn CP, Holcomb T et al. (2009). Smoothened mutation confers resistance to a hedgehog pathway inhibitor in medulloblastoma. Science 326: 572–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Enders G, Lees JA, Beijersbergen RL, Bernards R, Harlow E . (1995). The pRB-related protein p107 contains two growth suppression domains: independent interactions with E2F and cyclin/cdk complexes. EMBO J 14: 1904–1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Michael J Klein and the Pathology and Laboratory Medicine group at the Hospital for Special Surgery and MSKCC microcyteometry facility. We also thank Lori A Mainwaring, Cedric Dray, Cemille Guldal, Elisa DeStanchina and Fajun Yang for helpful discussions. These studies were funded by the Lung Cancer Center and the division of thoracic surgery at Weill Cornell Medical College (ZN), the NIH (NINDS R01NS061070) (AMK) and the Memorial Sloan–Kettering Brain Tumor Center (BB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Nahlé.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatia, B., Hsieh, M., Kenney, A. et al. Mitogenic Sonic hedgehog signaling drives E2F1-dependent lipogenesis in progenitor cells and medulloblastoma. Oncogene 30, 410–422 (2011). https://doi.org/10.1038/onc.2010.454

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.454

Keywords

This article is cited by

Search

Quick links