Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

FOXM1 is a transcriptional target of ERα and has a critical role in breast cancer endocrine sensitivity and resistance

Abstract

In this study, we investigated the regulation of FOXM1 expression by estrogen receptor α (ERα) and its role in hormonal therapy and endocrine resistance. FOXM1 protein and mRNA expression was regulated by ER-ligands, including estrogen, tamoxifen (OHT) and fulvestrant (ICI182780; ICI) in breast carcinoma cell lines. Depletion of ERα by RNA interference (RNAi) in MCF-7 cells downregulated FOXM1 expression. Reporter gene assays showed that ERα activates FOXM1 transcription through an estrogen-response element (ERE) located within the proximal promoter region. The direct binding of ERα to the FOXM1 promoter was confirmed in vitro by mobility shift and DNA pull-down assays and in vivo by chromatin immunoprecipitation (ChIP) analysis. Our data also revealed that upon OHT treatment ERα recruits histone deacetylases to the ERE site of the FOXM1 promoter, which is associated with a decrease in histone acetylation and transcription activity. Importantly, silencing of FOXM1 by RNAi abolished estrogen-induced MCF-7 cell proliferation and overcame acquired tamoxifen resistance. Conversely, ectopic expression of FOXM1 abrogated the cell cycle arrest mediated by the anti-estrogen OHT. OHT repressed FOXM1 expression in endocrine sensitive but not resistant breast carcinoma cell lines. Furthermore, qRT–PCR analysis of breast cancer patient samples revealed that there was a strong and significant positive correlation between ERα and FOXM1 mRNA expression. Collectively, these results show FOXM1 to be a key mediator of the mitogenic functions of ERα and estrogen in breast cancer cells, and also suggest that the deregulation of FOXM1 may contribute to anti-estrogen insensitivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ali S, Coombes RC . (2002). Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2: 101–112.

    Article  PubMed  Google Scholar 

  • Bourdeau V, Deschenes J, Metivier R, Nagai Y, Nguyen D, Bretschneider N et al. (2004). Genome-wide identification of high-affinity estrogen response elements in human and mouse. Mol Endocrinol 18: 1411–1427.

    Article  CAS  PubMed  Google Scholar 

  • Brunner N, Zugmaier G, Bano M, Ennis BW, Clarke R, Cullen KJ et al. (1989). Endocrine therapy of human breast cancer cells: the role of secreted polypeptide growth factors. Cancer Cells 1: 81–86.

    CAS  PubMed  Google Scholar 

  • Butt AJ, McNeil CM, Musgrove EA, Sutherland RL . (2005). Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr Relat Cancer 12 (Suppl 1): S47–S59.

    Article  CAS  PubMed  Google Scholar 

  • Carroll JS, Brown M . (2006). Estrogen receptor target gene: an evolving concept. Mol Endocrinol 20: 1707–1714.

    Article  CAS  PubMed  Google Scholar 

  • Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ et al. (2005). Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122: 33–43.

    Article  CAS  PubMed  Google Scholar 

  • Cicatiello L, Scafoglio C, Altucci L, Cancemi M, Natoli G, Facchiano A et al. (2004). A genomic view of estrogen actions in human breast cancer cells by expression profiling of the hormone-responsive transcriptome. J Mol Endocrinol 32: 719–775.

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Medema RH, Garcia-Cao I, Dubuisson ML, Barradas M, Glassford J et al. (2000). Inhibition of the phosphoinositide 3-kinase pathway induces a senescence-like arrest mediated by p27Kip1. J Biol Chem 275: 21960–21968.

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Arias AA, Loy TS, Bickel JT, Chapman RK . (1993). Utility of BER-EP4 in the diagnosis of adenocarcinoma in effusions: an immunocytochemical study of 232 cases. Diagn Cytopathol 9: 516–521.

    Article  CAS  PubMed  Google Scholar 

  • Elkak AE, Mokbel K . (2001). Pure antiestrogens and breast cancer. Curr Med Res Opin 17: 282–289.

    Article  CAS  PubMed  Google Scholar 

  • Essafi A, Fernandez de Mattos S, Hassen YA, Soeiro I, Mufti GJ, Thomas NS et al. (2005). Direct transcriptional regulation of Bim by FoxO3a mediates STI571-induced apoptosis in Bcr-Abl-expressing cells. Oncogene 24: 2317–2329.

    Article  CAS  PubMed  Google Scholar 

  • Essafi A, Gomes AR, Pomeranz KM, Zwolinska AK, Varshochi R, McGovern UB et al. (2009). Studying the subcellular localization and DNA-binding activity of FoxO transcription factors, downstream effectors of PI3K/Akt. Methods Mol Biol 462: 201–211.

    CAS  PubMed  Google Scholar 

  • Fellowes VS, Husebekk A, Gress RE, Vance BA . (2004). Minimal residual disease detection in breast cancer: improved sensitivity using cytokeratin 19 and epidermal growth factor receptor RT–PCR. Int J Oncol 24: 861–867.

    CAS  PubMed  Google Scholar 

  • Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ et al. (2009). PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res 11: R77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fung TK, Poon RY . (2005). A roller coaster ride with the mitotic cyclins. Semin Cell Dev Biol 16: 335–342.

    Article  CAS  PubMed  Google Scholar 

  • Gapinski PV, Donegan WL . (1980). Estrogen receptors and breast cancer: prognostic and therapeutic implications. Surgery 88: 386–393.

    CAS  PubMed  Google Scholar 

  • Goss PE, Muss HB, Ingle JN, Whelan TJ, Wu M . (2008). Extended adjuvant endocrine therapy in breast cancer: current status and future directions. Clin Breast Cancer 8: 411–417.

    Article  CAS  PubMed  Google Scholar 

  • Korver W, Roose J, Clevers H . (1997a). The winged-helix transcription factor Trident is expressed in cycling cells. Nucleic Acids Res 25: 1715–1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korver W, Roose J, Heinen K, Weghuis DO, de Bruijn D, van Kessel AG et al. (1997b). The human TRIDENT/HFH-11/FKHL16 gene: structure, localization, and promoter characterization. Genomics 46: 435–442.

    Article  CAS  PubMed  Google Scholar 

  • Kothari MS, Ali S, Buluwela L, Livni N, Shousha S, Sinnett HD et al. (2003). Purified malignant mammary epithelial cells maintain hormone responsiveness in culture. Br J Cancer 88: 1071–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwok JM, Myatt SS, Marson CM, Coombes RC, Constantinidou D, Lam EW . (2008). Thiostrepton selectively targets breast cancer cells through inhibition of FOXM1 expression. Mol Cancer Ther 7: 2022–2032. (in press).

    Article  CAS  PubMed  Google Scholar 

  • Laoukili J, Alvarez M, Meijer LA, Stahl M, Mohammed S, Kleij L et al. (2008a). Activation of FoxM1 during G2 requires cyclin A/Cdk-dependent relief of autorepression by the FoxM1 N-terminal domain. Mol Cell Biol 28: 3076–3087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laoukili J, Alvarez-Fernandez M, Stahl M, Medema RH . (2008b). FoxM1 is degraded at mitotic exit in a Cdh1-dependent manner. Cell Cycle 7: 2720–2726.

    Article  CAS  PubMed  Google Scholar 

  • Laoukili J, Kooistra MR, Bras A, Kauw J, Kerkhoven RM, Morrison A et al. (2005). FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol 7: 126–136.

    Article  CAS  PubMed  Google Scholar 

  • Leung TW, Lin SS, Tsang AC, Tong CS, Ching JC, Leung WY et al. (2001). Over-expression of FoxM1 stimulates cyclin B1 expression. FEBS Lett 507: 59–66.

    Article  CAS  PubMed  Google Scholar 

  • Lundgren K, Holm K, Nordenskjold B, Borg A, Landberg G . (2008). Gene products of chromosome 11q and their association with CCND1 gene amplification and tamoxifen resistance in premenopausal breast cancer. Breast Cancer Res 10: R81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luscher-Firzlaff JM, Lilischkis R, Luscher B . (2006). Regulation of the transcription factor FOXM1c by Cyclin E/CDK2. FEBS Lett 580: 1716–1722.

    Article  PubMed  Google Scholar 

  • Lykkesfeldt AE, Larsen JK, Christensen IJ . (1986). Cell cycle analysis of estrogen stimulation and antiestrogen inhibition of growth of the human breast cancer cell line MCF-7. Breast Cancer Res Treat 7 (Suppl): S83–S90.

    PubMed  Google Scholar 

  • Lykkesfeldt AE, Madsen MW, Briand P . (1994). Altered expression of estrogen-regulated genes in a tamoxifen-resistant and ICI 164 384 and ICI 182 780 sensitive human breast cancer cell line, MCF-7/TAMR-1. Cancer Res 54: 1587–1595.

    CAS  PubMed  Google Scholar 

  • Ma RY, Tong TH, Cheung AM, Tsang AC, Leung WY, Yao KM . (2005). Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci 118: 795–806.

    Article  CAS  PubMed  Google Scholar 

  • Madsen MW, Reiter BE, Larsen SS, Briand P, Lykkesfeldt AE . (1997). Estrogen receptor messenger RNA splice variants are not involved in antiestrogen resistance in sublines of MCF-7 human breast cancer cells. Cancer Res 57: 585–589.

    CAS  PubMed  Google Scholar 

  • Madureira PA, Varshochi R, Constantinidou D, Francis RE, Coombes RC, Yao KM et al. (2006). The Forkhead box M1 protein regulates the transcription of the estrogen receptor alpha in breast cancer cells. J Biol Chem 281: 25167–25176.

    Article  CAS  PubMed  Google Scholar 

  • Major ML, Lepe R, Costa RH . (2004). Forkhead box M1B transcriptional activity requires binding of Cdk-cyclin complexes for phosphorylation-dependent recruitment of p300/CBP coactivators. Mol Cell Biol 24: 2649–2661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin KJ, Patrick DR, Bissell MJ, Fournier MV . (2008). Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets. PLoS ONE 3: e2994.

    Article  PubMed  PubMed Central  Google Scholar 

  • Masiakowski P, Breathnach R, Bloch J, Gannon F, Krust A, Chambon P . (1982). Cloning of cDNA sequences of hormone-regulated genes from the MCF-7 human breast cancer cell line. Nucleic Acids Res 10: 7895–7903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGovern UB, Francis RE, Peck B, Guest SK, Wang J, Myatt SS et al. (2009). Gefitinib (Iressa) represses FOXM1 expression via FOXO3a in breast cancer. Mol Cancer Ther 8: 582–591.

    Article  CAS  PubMed  Google Scholar 

  • Myatt SS, Lam EW . (2007). Promiscuous and lineage-specific roles of cell cycle regulators in haematopoiesis. Cell Div 2: 6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Osborne CK, McGuire WL . (1979). The use of steroid hormone receptors in the treatment of human breast cancer: a review. Bull Cancer 66: 203–209.

    CAS  PubMed  Google Scholar 

  • Park HJ, Wang Z, Costa RH, Tyner A, Lau LF, Raychaudhuri P . (2008). An N-terminal inhibitory domain modulates activity of FoxM1 during cell cycle. Oncogene 27: 1696–1704.

    Article  CAS  PubMed  Google Scholar 

  • Pilarsky C, Wenzig M, Specht T, Saeger HD, Grutzmann R . (2004). Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia 6: 744–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schug J . (2008). Using TESS to predict transcription factor binding sites in DNA sequence. Curr Protoc Bioinformatics Chapter 2 Unit 2 6.

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D et al. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82: 1107–1112.

    Article  CAS  PubMed  Google Scholar 

  • Tashiro E, Tsuchiya A, Imoto M . (2007). Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression. Cancer Sci 98: 629–635.

    Article  CAS  PubMed  Google Scholar 

  • Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ et al. (2005). Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol 25: 10875–10894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Hung NJ, Costa RH . (2001). Earlier expression of the transcription factor HFH-11B diminishes induction of p21(CIP1/WAF1) levels and accelerates mouse hepatocyte entry into S-phase following carbon tetrachloride liver injury. Hepatology 33: 1404–1414.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Kiyokawa H, Dennewitz MB, Costa RH . (2002). The Forkhead Box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc Natl Acad Sci USA 99: 16881–16886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Dean JL, Millar EK, Tran TH, McNeil CM, Burd CJ et al. (2008). Cyclin D1b is aberrantly regulated in response to therapeutic challenge and promotes resistance to estrogen antagonists. Cancer Res 68: 5628–5638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wierstra I, Alves J . (2006a). FOXM1c is activated by cyclin E/Cdk2, cyclin A/Cdk2, and cyclin A/Cdk1, but repressed by GSK-3alpha. Biochem Biophys Res Commun 348: 99–108.

    Article  CAS  PubMed  Google Scholar 

  • Wierstra I, Alves J . (2006b). Transcription factor FOXM1c is repressed by RB and activated by cyclin D1/Cdk4. Biol Chem 387: 949–962.

    CAS  PubMed  Google Scholar 

  • Yamashita H . (2008). Current research topics in endocrine therapy for breast cancer. Int J Clin Oncol 13: 380–383.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita H, Takahashi S, Ito Y, Yamashita T, Ando Y, Toyama T et al. (2009). Predictors of response to exemestane as primary endocrine therapy in estrogen receptor-positive breast cancer. Cancer Sci 100: 2028–2033.

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Nass SJ, Smith D, Nelson WG, Herman JG, Davidson NE . (2003). Specific inhibition of DNMT1 by antisense oligonucleotides induces re-expression of estrogen receptor-alpha (ER) in ER-negative human breast cancer cell lines. Cancer Biol Ther 2: 552–556.

    Article  CAS  PubMed  Google Scholar 

  • Ye H, Holterman AX, Yoo KW, Franks RR, Costa RH . (1999). Premature expression of the winged helix transcription factor HFH-11B in regenerating mouse liver accelerates hepatocyte entry into S phase. Mol Cell Biol 19: 8570–8580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwart W, Rondaij M, Jalink K, Sharp ZD, Mancini MA, Neefjes J et al. (2009). Resistance to antiestrogen arzoxifene is mediated by overexpression of cyclin D1. Mol Endocrinol 23: 1335–1345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Grant support was given by Breast Cancer Campaign (J Millour and EW-F Lam), Cancer Research UK (SS Myatt, K-K Ho, RC Coombes, EW-F Lam), Biotechnology and Biological Sciences Research Council (MSC Wilson and EW-F Lam).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E W-F Lam.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millour, J., Constantinidou, D., Stavropoulou, A. et al. FOXM1 is a transcriptional target of ERα and has a critical role in breast cancer endocrine sensitivity and resistance. Oncogene 29, 2983–2995 (2010). https://doi.org/10.1038/onc.2010.47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.47

Keywords

This article is cited by

Search

Quick links