Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Presenilin modulates EGFR signaling and cell transformation by regulating the ubiquitin ligase Fbw7

Abstract

The epidermal growth factor receptor (EGFR) and Notch signaling pathways have antagonistic roles during epidermal differentiation and carcinogenesis. The molecular mechanisms regulating the crosstalk between EGFR and Notch during epidermal transformation are largely unknown. We found enhanced EGFR-dependent signaling, proliferation and oncogenic transformation caused by loss of presenilins (PS), the catalytic components of γ-secretase that generates the Notch1 intracellular domain (NICD). The underlying mechanism for abnormal EGFR signaling in PS-deficient cells involves γ-secretase-independent transcriptional upregulation of the E3 ubiquitin ligase Fbw7. Fbw7α, which targets NICD for degradation, regulates positively EGFR by affecting a proteasome-dependent ubiquitination step essential for constitutive degradation and stability of EGFR. To investigate the pathological relevance of this findings in vivo, we generated a novel epidermal conditional PS-deficient (ePS cDKO) mouse by deleting both PS in keratinocytes of the basal layer of the epidermis. The ePS cDKO mice develop epidermal hyperplasia associated with enhanced expression of both EGFR and Fbw7 and reduced NICD levels in keratinocytes. These findings establish a novel role for PS on epidermal growth and transformation by reciprocally regulating the EGFR and Notch signaling pathways through Fbw7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

PS:

presenilins

NICD:

Notch1 intracellular domain

References

  • Alwan HA, van Zoelen EJ, van Leeuwen JE . (2003). Ligand-induced lysosomal epidermal growth factor receptor (EGFR) degradation is preceded by proteasome-dependent EGFR de-ubiquitination. J Biol Chem 278: 35781–35790.

    Article  CAS  Google Scholar 

  • Bhoumik A, Fichtman B, DeRossi C, Breitwieser W, Kluger HM, Davis S et al. (2008). Suppressor role of activating transcription factor 2 (ATF2) in skin cancer. Proc Natl Acad Sci USA 105: 1674–1679.

    Article  CAS  Google Scholar 

  • Blanpain C, Lowry W, Pasolli H, Fuchs E . (2006). Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev 20: 3022–3035.

    Article  CAS  Google Scholar 

  • Chen ZJ, Sun LJ . (2009). Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33: 275–286.

    Article  CAS  Google Scholar 

  • de Souza N, Vallier LG, Fares H, Greenwald I . (2007). SEL-2, the C. elegans neurobeachin/LRBA homolog, is a negative regulator of lin-12/Notch activity and affects endosomal traffic in polarized epithelial cells. Development 134: 691–702.

    Article  CAS  Google Scholar 

  • De Strooper B . (2007). Loss-of-function presenilin mutations in Alzheimer disease. EMBO Rep 8: 141–146.

    Article  CAS  Google Scholar 

  • De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS et al. (1999). A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398: 518–522.

    Article  CAS  Google Scholar 

  • Demehri S, Liu Z, Lee J, Lin MH, Crosby SD, Roberts CJ et al. (2008). Notch-deficient skin induces a lethal systemic B-lymphoproliferative disorder by secreting TSLP, a sentinel for epidermal integrity. PLoS Biol 6: e123.

    Article  Google Scholar 

  • Deng Y, Tarassishin L, Kallhoff V, Peethumnongsin E, Wu L, Li YM et al. (2006). Deletion of presenilin 1 hydrophilic loop sequence leads to impaired γ-secretase activity and exacerbated amyloid pathology. J Neurosci 26: 3845–3854.

    Article  CAS  Google Scholar 

  • Di Fiore PP, Pierce JH, Fleming TP, Hazan R, Ullrich A, King CR et al. (1987). Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell 51: 1063–1070.

    Article  CAS  Google Scholar 

  • Grim J, Gustafson M, Hirata R, Hagar A, Swanger J, Welcker M et al. (2008). Isoform- and cell cycle-dependent substrate degradation by the Fbw7 ubiquitin ligase. J Cell Biol 181: 913–920.

    Article  CAS  Google Scholar 

  • Gupta-Rossi N, Le Bail O, Gonen H, Brou C, Logeat F, Six E et al. (2001). Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J Biol Chem 276: 34371–34378.

    Article  CAS  Google Scholar 

  • Huang F, Goh LK, Sorkin A . (2007). EGF receptor ubiquitination is not necessary for its internalization. Proc Natl Acad Sci USA 104: 16904–16909.

    Article  CAS  Google Scholar 

  • Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A . (2006). Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell 21: 737–748.

    Article  CAS  Google Scholar 

  • Indra A, Warot X, Brocard J, Bornert JM, Xiao J-H, Chambon P et al. (1999). Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ERT and Cre-ERT2 recombinases. Nucleic Acids Res 27: 4324–4327.

    Article  CAS  Google Scholar 

  • Jost M, Kari C, Rodeck U . (2000). The EGF receptor—an essential regulator of multiple epidermal functions. Eur J Dermatol 10: 505–510.

    CAS  PubMed  Google Scholar 

  • Kalyankrishna S, Grandis JR . (2006). Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol 24: 2666–2672.

    Article  CAS  Google Scholar 

  • Kang DE, Soriano S, Xia X, Eberhart CG, De Strooper B, Zheng H et al. (2002). Presenilin couples the paired phosphorylation of β-catenin independent of axin: implications for β-catenin activation in tumorigenesis. Cell 110: 751–762.

    Article  CAS  Google Scholar 

  • Kolev V, Mandinova A, Guinea-Viniegra J, Hu B, Lefort K, Lambertini C et al. (2008). EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer. Nat Cell Biol 10: 902–911.

    Article  CAS  Google Scholar 

  • Koo EH, Kopan R . (2004). Potential role of presenilin-regulated signaling pathways in sporadic neurodegeneration. Nat Med 10 (Suppl): S26–S33.

    Article  Google Scholar 

  • Kopan R, Schroeter EH, Weintraub H, Nye JS . (1996). Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc Natl Acad Sci USA 93: 1683–1688.

    Article  CAS  Google Scholar 

  • Lefort K, Dotto GP . (2004). Notch signaling in the integrated control of keratinocyte growth/differentiation and tumor suppression. Semin Cancer Biol 14: 374–386.

    Article  CAS  Google Scholar 

  • Li J, Pauley AM, Myers RL, Shuang R, Brashler JR, Yan R et al. (2002). SEL-10 interacts with presenilin 1, facilitates its ubiquitination, and alters A-beta peptide production. J Neurochem 82: 1540–1548.

    Article  CAS  Google Scholar 

  • Li M, Indra A, Warot X, Brocard J, Messaddeq N, Kato S et al. (2000). Skin abnormalities generated by temporally controlled RXRalpha mutations in mouse epidermis. Nature 407: 633–636.

    Article  CAS  Google Scholar 

  • Li T, Wen H, Brayton C, Das P, Smithson LA, Fauq A et al. (2007). Epidermal growth factor receptor and notch pathways participate in the tumor suppressor function of γ-secretase. J Biol Chem 282: 32264–32273.

    Article  CAS  Google Scholar 

  • Longva KE, Blystad FD, Stang E, Larsen AM, Johannessen LE, Madshus IH . (2002). Ubiquitination and proteasomal activity is required for transport of the EGF receptor to inner membranes of multivesicular bodies. J Cell Biol 156: 843–854.

    Article  CAS  Google Scholar 

  • Mao JH, Perez-Losada J, Wu D, Delrosario R, Tsunematsu R, Nakayama KI et al. (2004). Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature 432: 775–779.

    Article  CAS  Google Scholar 

  • Marmor MD, Yarden Y . (2004). Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene 23: 2057–2070.

    Article  CAS  Google Scholar 

  • Mosesson Y, Shtiegman K, Katz M, Zwang Y, Vereb G, Szollosi J et al. (2003). Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. J Biol Chem 278: 21323–21326.

    Article  CAS  Google Scholar 

  • Nicolas M, Wolfer A, Raj K, Kummer J, Mill P, van Noort M et al. (2003). Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 33: 416–421.

    Article  CAS  Google Scholar 

  • O'Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C et al. (2007). FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J Exp Med 204: 1813–1824.

    Article  CAS  Google Scholar 

  • Pan Y, Lin MH, Tian X, Cheng HT, Gridley T, Shen J et al. (2004). γ-Secretase functions through Notch signaling to maintain skin appendages but is not required for their patterning or initial morphogenesis. Dev Cell 7: 731–743.

    Article  CAS  Google Scholar 

  • Perez-Losada J, Mao JH, Balmain A . (2005). Control of genomic instability and epithelial tumor development by the p53-Fbxw7/Cdc4 pathway. Cancer Res 65: 6488–6492.

    Article  CAS  Google Scholar 

  • Pirrone A, Hager B, Fleckman P . (2005). Primary mouse keratinocyte culture. Methods Mol Biol 289: 3–14.

    PubMed  Google Scholar 

  • Proweller A, Tu L, Lepore JJ, Cheng L, Lu MM, Seykora J et al. (2006). Impaired Notch signaling promotes de novo squamous cell carcinoma formation. Cancer Res 66: 7438–7444.

    Article  CAS  Google Scholar 

  • Repetto E, Yoon I-S, Zheng H, Zhang DE . (2007). Presenilin-1 regulates epidermal growth factor receptor turnover and signaling in the endosomal-lysosomal pathway. J Biol Chem 282: 31504–31516.

    Article  CAS  Google Scholar 

  • Rikiyama T, Curtis J, Oikawa M, Zimonjic DB, Popescu N, Murphy BA et al. (2003). GCF2: expression and molecular analysis of repression. Biochim Biophys Acta 1629: 15–25.

    Article  CAS  Google Scholar 

  • Saura CA, Choi SY, Beglopoulos V, Malkani S, Zhang D, Shankaranarayana Rao BS et al. (2004). Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42: 23–36.

    Article  CAS  Google Scholar 

  • Saura CA, Tomita T, Soriano S, Takahashi M, Leem JY, Honda T et al. (2000). The nonconserved hydrophilic loop domain of presenilin (PS) is not required for PS endoproteolysis or enhanced Aβ42 production mediated by familial early onset Alzheimer/s disease-linked PS variants. J Biol Chem 275: 17136–17142.

    Article  CAS  Google Scholar 

  • Shaye DD, Greenwald I . (2002). Endocytosis-mediated downregulation of LIN-12/Notch upon Ras activation in Caenorhabditis elegans. Nature 420: 686–690.

    Article  CAS  Google Scholar 

  • Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S . (1997). Skeletal and CNS defects in presenilin-1 deficient mice. Cell 89: 629–639.

    Article  CAS  Google Scholar 

  • Soriano S, Kang DE, Fu M, Pestell R, Chevallier N, Zheng H et al. (2001). Presenilin 1 negatively regulates beta-catenin/T cell factor/lymphoid enhancer factor-1 signaling independently of β-amyloid precursor protein and notch processing. J Cell Biol 152: 785–794.

    Article  CAS  Google Scholar 

  • Stoscheck CM, Carpenter G . (1984). Down regulation of epidermal growth factor receptors: direct demonstration of receptor degradation in human fibroblasts. J Cell Biol 98: 1048–1053.

    Article  CAS  Google Scholar 

  • To MD, Gokgoz N, Doyle TG, Donoviel DB, Knight JA, Hyslop PS et al. (2006). Functional characterization of novel presenilin-2 variants in human breast cancers. Oncogene 25: 3557–3564.

    Article  CAS  Google Scholar 

  • Tournoy J, Bossuyt X, Snellinx A, Regent M, Garmyn M, Serneels L et al. (2004). Partial loss of presenilins causes seborrheic keratosis and autoimmune disease in mice. Hum Mol Genet 13: 1321–1331.

    Article  CAS  Google Scholar 

  • Vasioukhin V, Degenstein L, Wise B, Fuchs E . (1999). The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc Natl Acad Sci USA 96: 8551–8556.

    Article  CAS  Google Scholar 

  • Wang JW, Gamsby JJ, Highfill SL, Mora LB, Bloom GC, Yeatman TJ et al. (2004). Deregulated expression of LRBA facilitates cancer cell growth. Oncogene 23: 4089–4097.

    Article  CAS  Google Scholar 

  • Welcker M, Clurman BE . (2007). Fbw7/hCDC4 dimerization regulates its substrate interactions. Cell Division 2: 7.

    Article  Google Scholar 

  • Welcker M, Clurman BE . (2008). FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8: 83–93.

    Article  CAS  Google Scholar 

  • Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 101: 9085–9090.

    Article  CAS  Google Scholar 

  • Wu G, Hubbard EJ, Kitajewski JK, Greenwald I . (1998). Evidence for functional and physical association between Caenorhabditis elegans SEL-10, a Cdc4p-related protein, and SEL-12 presenilin. Proc Natl Acad Sci USA 95: 15787–15791.

    Article  CAS  Google Scholar 

  • Wu G, Lyapina S, Das I, Li J, Gurney M, Pauley A et al. (2001). Sel-10 is an inhibitor of Notch signaling that targets Notch for ubiquitin-mediated protein degradation. Mol Biol Cell 21: 7403–7415.

    Article  CAS  Google Scholar 

  • Xia X, Qian S, Soriano S, Wu Y, Fletcher AM, Wang XJ et al. (2001). Loss of presenilin 1 is associated with enhanced β-catenin signaling and skin tumorigenesis. Proc Natl Acad Sci USA 98: 10863–10868.

    Article  CAS  Google Scholar 

  • Zhang Y-W, Wang R, Liu Q, Zhang H, Liao F-F, Xu H . (2007). Presenilin/γ-secretase-dependent processing of β-amyloid precursor protein regulates EGF receptor expression. Proc Natl Acad Sci USA 104: 10613–10618.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B De Strooper for providing the immortalized PS fibroblasts, J Shen for PS1 (f/f); PS2−/− mice, G Thinakaran for the pAG3zeo-PS1Δloop plasmid, R Kopan for the mNICD-myc plasmid, BE Clurman for the Fbw7α/β-Flag cDNAs and A Johnson for the pER1-luc plasmid. We thank S Aznar-Benitah for histological expertise advice and E Martín and M Castillo for technical assistance. We thank Servei de Microscopia and Servei de Genómica de la UAB for the excellent technical support. This study was supported by grants from Fundació Marató-TV3 (050710), Spanish Ministerio de Ciencia e Innovación (SAF2007-64115, CIBERNED CB06/05/0042 and Programa Ramón y Cajal) and 6th Framework Programme of the European Union (Marie Curie International Reintegration Grant IRG-014860). VRR received a doctoral fellowship from Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C A Saura.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocher-Ros, V., Marco, S., Mao, JH. et al. Presenilin modulates EGFR signaling and cell transformation by regulating the ubiquitin ligase Fbw7. Oncogene 29, 2950–2961 (2010). https://doi.org/10.1038/onc.2010.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.57

Keywords

This article is cited by

Search

Quick links