Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Targeting of mRNAs by multiple miRNAs: the next step

Subjects

Abstract

Micro(mi)RNAs are small noncoding RNAs that regulate expression of the majority of the genes in the genome at either the messenger RNA (mRNA) level (by degrading mRNA) or the protein level (by blocking translation). miRNAs are thought to be components of vast regulatory networks. Currently, the field is focused primarily on identifying novel targets of individual miRNAs. This focus is about to undergo a dramatic change. In a new paper by Wu et al. (2010) it is experimentally confirmed that multiple miRNAs target the same gene, suggesting that it is the combination of all these activities that determines the expression of miRNA target genes. This study ushers in a new era of miRNA research that focuses on networks more than on individual connections between miRNA and strongly predicted targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP . (2008). The impact of microRNAs on protein output. Nature 455: 64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi SW, Zang JB, Mele A, Darnell RB . (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460: 479–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forman JJ, Legesse-Miller A, Coller HA . (2008). A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci USA 105: 14879–14884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP . (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19: 92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP . (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27: 91–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammell M, Long D, Zhang L, Lee A, Carmack CS, Han M et al. (2008). mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nat Methods 5: 813–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobert O . (2007). miRNAs play a tune. Cell 131: 22–24.

    Article  CAS  PubMed  Google Scholar 

  • Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM et al. (2008). MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 28: 2167–2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Q, Feng MG, Mo YY . (2009). Systematic validation of predicted microRNAs for cyclin D1. BMC Cancer 9: 194.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. (2005). RAS is regulated by the let-7 microRNA family. Cell 120: 635–647.

    Article  CAS  PubMed  Google Scholar 

  • Khan AA, Betel D, Miller ML, Sander C, Leslie CS, Marks DS . (2009). Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol 27: 549–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. (2005). Combinatorial microRNA target predictions. Nat Genet 37: 495–500.

    Article  CAS  PubMed  Google Scholar 

  • Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T . (2007). Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39: 673–677.

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP . (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Min H, Yue S, Chen CZ . (2008). Pre-miRNA loop nucleotides control the distinct activities of mir-181a-1 and mir-181c in early T cell development. PLoS ONE 3: e3592.

    Article  PubMed  PubMed Central  Google Scholar 

  • Orom UA, Nielsen FC, Lund AH . (2008). MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30: 460–471.

    Article  PubMed  Google Scholar 

  • Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I et al. (2008). E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13: 272–286.

    Article  CAS  PubMed  Google Scholar 

  • Rajewsky N . (2006). microRNA target predictions in animals. Nat Genet 38 (Suppl): S8–S13.

    Article  CAS  PubMed  Google Scholar 

  • Ritchie W, Flamant S, Rasko JE . (2009). Predicting microRNA targets and functions: traps for the unwary. Nat Methods 6: 397–398.

    Article  CAS  PubMed  Google Scholar 

  • Schickel R, Boyerinas B, Park SM, Peter ME . (2008). MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27: 5959–5974.

    Article  CAS  PubMed  Google Scholar 

  • Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I . (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455: 1124–1128.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Tomita M, Kanai A . (2007). Computational methods for microRNA target prediction. Methods Enzymol 427: 65–86.

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Huang S, Ding J, Zhao Y, Liang L, Liu T et al. (2010). Multiple microRNAs modulate p21 Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene (this issue).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M E Peter.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peter, M. Targeting of mRNAs by multiple miRNAs: the next step. Oncogene 29, 2161–2164 (2010). https://doi.org/10.1038/onc.2010.59

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.59

Keywords

This article is cited by

Search

Quick links