Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

GLI1-dependent transcriptional repression of CYLD in basal cell carcinoma

Abstract

CYLD is a deubiquitination enzyme that regulates different cellular processes, such as cell proliferation and cell survival. Mutation and loss of heterozygosity of the CYLD gene causes development of cylindromatosis, a benign tumour originating from the skin. Our study shows that CYLD expression is dramatically downregulated in basal cell carcinoma (BCC), the most common cancer in humans. Reduced CYLD expression in basal cell carcinoma was mediated by GLI1-dependent activation of the transcriptional repressor Snail. Inhibition of GLI1 restored the CYLD expression-mediated Snail signaling pathway, and caused a significant delay in the G1 to S phase transition, as well as proliferation. Our data suggest that GLI1-mediated suppression of CYLD has a significant role in basal cell carcinoma progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Altaba AR, Sanchez P, Dahmane N . (2002). Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2: 361–372.

    Article  Google Scholar 

  • Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R et al. (2000). Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet 25: 160–165.

    Article  CAS  Google Scholar 

  • Buonamici S, Williams J, Morrissey M, Wang A, Guo R, Vattay A et al. (2010). Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med 2: 51ra70.

    Article  Google Scholar 

  • Epstein EH . (2008). Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer 8: 743–754.

    Article  CAS  Google Scholar 

  • Fiaschi M, Rozell B, Bergstrom A, Toftgard R . (2009). Development of mammary tumors by conditional expression of GLI1. Cancer Res 69: 4810–4817.

    Article  CAS  Google Scholar 

  • Grachtchouk M, Rong M, Yu S, Zhang XY, Sasaki H, Hui CC et al. (2000). Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat Genet 24: 216–217.

    Article  CAS  Google Scholar 

  • Jeong J, Mao J, Tenzen T, Kottmann AH, McMahon AP . (2004). Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordial. Genes Dev 18: 937–951.

    Article  CAS  Google Scholar 

  • Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A et al. (2004). Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431: 707–712.

    Article  CAS  Google Scholar 

  • Kasper M, Regi G, Frischauf AM, Aberger F . (2006). GLI transcription factors: mediators of oncogenic hedgehog signaling. Eur J Cancer 42: 437–445.

    Article  CAS  Google Scholar 

  • Kasper M, Regl G, Eichberger T, Frischauf AM, Aberger F . (2007). Efficient manipulation of hedgehog/GLI signaling using retroviral expression systems. Methods Mol Biol 397: 67–78.

    Article  CAS  Google Scholar 

  • Kenney AM, Rowitch DH . (2000). Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol 20: 9055–9067.

    Article  CAS  Google Scholar 

  • Li X, Deng W, Lobo-Ruppert SM, Ruppert JM . (2007). Gli1 acts through Snail and E-cadherin to promote nuclear signaling by beta-catenin. Oncogene 26: 4489–4498.

    Article  CAS  Google Scholar 

  • Li X, Deng W, Nail CD, Bailey SK, Kraus MH, Ruppert JM et al. (2006). Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation. Oncogene 25: 609–621.

    Article  CAS  Google Scholar 

  • Louro ID, Bailey EC, Li XN, South LS, McKie-Bell PR, Yoder BK et al. (2002). Comparative gene expression profile analysis of GLI and c-MYC in an epithelial model of malignant transformation. Cancer Res 62: 5867–5873.

    CAS  Google Scholar 

  • Massoumi R . (2010). Ubiquitin chain cleavage: CYLD at work. Trends Biochem Sci 35: 392–399.

    Article  CAS  Google Scholar 

  • Massoumi R, Chmielarska K, Hennecke K, Pfeifer A, Fassler R . (2006a). Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell 125: 665–677.

    Article  CAS  Google Scholar 

  • Massoumi R, Kuphal S, Hellerbrand C, Haas B, Wild P, Spruss T et al. (2009). Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma. J Exp Med 206: 221–232.

    Article  CAS  Google Scholar 

  • Massoumi R, Podda M, Fassler R, Paus R . (2006b). Cylindroma as tumor of hair follicle origin. J Invest Dermatol 126: 1182–1184.

    Article  CAS  Google Scholar 

  • Moriwaki K, Tsuruta D, Sugawara K, Kobayashi H, Massoumi R, Ishii M . (2007). A role of CYLD in hair cycling mouse. J Invest Dermatol 127: S107–S107.

    Google Scholar 

  • Nilsson M, Unden AB, Krause D, Malmqwist U, Raza K, Zaphiropoulos PG et al. (2000). Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc Natl Acad Sci USA 97: 3438–3443.

    Article  CAS  Google Scholar 

  • Nitzki F, Zibat A, König S, Wijgerde M, Rosenberger A, Brembeck FH et al. (2010). Tumor stroma-derived Wnt5a induces differentiation of basal cell carcinoma of Ptch-mutant mice via CaMKII. Cancer Res 70: 2739–2748.

    Article  CAS  Google Scholar 

  • Regl G, Kasper M, Schnidar H, Eichberger T, Neill GW, Ikram MS et al. (2004). The zinc-finger transcription factor GLI2 antagonizes contact inhibition and differentiation of human epidermal cells. Oncogene 23: 1263–1274.

    Article  CAS  Google Scholar 

  • Regl G, Neill GW, Eichberger T, Kasper M, Ikram MS, Koller J et al. (2002). Human GLI2 and GLI1 are part of a positive feedback mechanism in basal cell carcinoma. Oncogene 21: 5529–5539.

    Article  CAS  Google Scholar 

  • So PL, Langston AW, Daniallinia N, Hebert JL, Fujimoto MA, Khaimskiy Y et al. (2006). Long-term establishment, characterization and manipulation of cell lines from mouse basal cell carcinoma tumors. Exp Dermatol 15: 742–750.

    Article  CAS  Google Scholar 

  • Von Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R et al. (2009). Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med 361: 1164–1172.

    Article  CAS  Google Scholar 

  • Wickstrom SA, Masoumi KC, Khochbin S, Fassler R, Massoumi R . (2010). CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin. Embo J 29: 131–144.

    Article  Google Scholar 

  • Yang SH, Andl T, Grachtchouk V, Wang AQ, Liu JH, Syu LJ et al. (2008). Pathological responses to oncogenic hedgehog signaling in skin are dependent on canonical Wnt/beta3-catenin signaling. Nat Genet 40: 1130–1135.

    Article  CAS  Google Scholar 

  • Yauch RL, Dijkgraaf GJ, Alicke B, Januario T, Ahn CP, Holcomb T et al. (2009). Smoothened mutation confers resistance to a hedgehog pathway inhibitor in medulloblastoma. Science 326: 572–574.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Rudolf Jung and Elise Nilsson for excellent technical assistance, Dr Anders Edsjö, for discussion, Dr Ervin H Epstein for the mouse BCC cell line ASZ001 and CSZ-1. This work was supported by the Swedish Society for Medical Research, Swedish Cancer Foundation, Swedish Medical Research Council, Crafoordska Foundation, Royal Physiographic Society in Lund, Gunnar Nilsson Cancer Foundation, U-MAS Research Foundations and ERC grant to RM and the Austrian Science Fund FWF (projects P20652), the priority program of the University of Salzburg and the Austrian Genome program Gen-AU to FA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Massoumi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuphal, S., Shaw-Hallgren, G., Eberl, M. et al. GLI1-dependent transcriptional repression of CYLD in basal cell carcinoma. Oncogene 30, 4523–4530 (2011). https://doi.org/10.1038/onc.2011.163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.163

Keywords

This article is cited by

Search

Quick links