Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EPLIN downregulation promotes epithelial–mesenchymal transition in prostate cancer cells and correlates with clinical lymph node metastasis

Abstract

Epithelial–mesenchymal transition (EMT) is a crucial mechanism for the acquisition of migratory and invasive capabilities by epithelial cancer cells. By conducting quantitative proteomics in experimental models of human prostate cancer (PCa) metastasis, we observed strikingly decreased expression of EPLIN (epithelial protein lost in neoplasm; or LIM domain and actin binding 1, LIMA-1) upon EMT. Biochemical and functional analyses demonstrated that EPLIN is a negative regulator of EMT and invasiveness in PCa cells. EPLIN depletion resulted in the disassembly of adherens junctions, structurally distinct actin remodeling and activation of β-catenin signaling. Microarray expression analysis identified a subset of putative EPLIN target genes associated with EMT, invasion and metastasis. By immunohistochemistry, EPLIN downregulation was also demonstrated in lymph node metastases of human solid tumors including PCa, breast cancer, colorectal cancer and squamous cell carcinoma of the head and neck. This study reveals a novel molecular mechanism for converting cancer cells into a highly invasive and malignant form, and has important implications in prognosis and treating metastasis at early stages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abe K, Takeichi M . (2008). EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc Natl Acad Sci USA 105: 13–19.

    Article  CAS  Google Scholar 

  • Arnold RS, Sun CQ, Richards JC, Grigoriev G, Coleman IM, Nelson PS et al. (2009). Mitochondrial DNA mutation stimulates prostate cancer growth in bone stromal environment. Prostate 69: 1–11.

    Article  CAS  Google Scholar 

  • Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W et al. (2007). Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer 7: 64.

    Article  Google Scholar 

  • Chen S, Maul RS, Kim HR, Chang DD . (2000). Characterization of the human EPLIN (epithelial protein lost in neoplasm) gene reveals distinct promoters for the two EPLIN isoforms. Gene 248: 69–76.

    Article  CAS  Google Scholar 

  • Chircop M, Oakes V, Graham ME, Ma MP, Smith CM, Robinson PJ et al. (2009). The actin-binding and bundling protein, EPLIN, is required for cytokinesis. Cell Cycle 8: 757–764.

    Article  CAS  Google Scholar 

  • Dong JT, Chen C . (2009). Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol Life Sci 66: 2691–2706.

    Article  CAS  Google Scholar 

  • Emadi Baygi M, Soheili ZS, Schmitz I, Sameie S, Schulz WA . (2010). Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines. Cell Biol Toxicol 26: 553–567.

    Article  CAS  Google Scholar 

  • Fidler IJ . (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3: 453–458.

    Article  CAS  Google Scholar 

  • Graham TR, Zhau HE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M et al. (2008). Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 68: 2479–2488.

    Article  CAS  Google Scholar 

  • Jiang WG, Martin TA, Lewis-Russell JM, Douglas-Jones A, Ye L, Mansel RE . (2008). Eplin-alpha expression in human breast cancer, the impact on cellular migration and clinical outcome. Mol Cancer 7: 71.

    Article  Google Scholar 

  • Katiyar SK . (2006). Matrix metalloproteinases in cancer metastasis: molecular targets for prostate cancer prevention by green tea polyphenols and grape seed proanthocyanidins. Endocr Metab Immune Disord Drug Targets 6: 17–24.

    Article  CAS  Google Scholar 

  • Keshamouni VG, Jagtap P, Michailidis G, Strahler JR, Kuick R, Reka AK et al. (2009). Temporal quantitative proteomics by iTRAQ 2D-LC-MS/MS and corresponding mRNA expression analysis identify post-transcriptional modulation of actin-cytoskeleton regulators during TGF-beta-Induced epithelial-mesenchymal transition. J Proteome Res 8: 35–47.

    Article  CAS  Google Scholar 

  • Keshamouni VG, Michailidis G, Grasso CS, Anthwal S, Strahler JR, Walker A et al. (2006). Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. J Proteome Res 5: 1143–1154.

    Article  CAS  Google Scholar 

  • Khwaja FW, Reed MS, Olson JJ, Schmotzer BJ, Gillespie GY, Guha A et al. (2007). Proteomic identification of biomarkers in the cerebrospinal fluid (CSF) of astrocytoma patients. J Proteome Res 6: 559–570.

    Article  CAS  Google Scholar 

  • Khwaja FW, Svoboda P, Reed M, Pohl J, Pyrzynska B, Van Meir EG . (2006). Proteomic identification of the wt-p53-regulated tumor cell secretome. Oncogene 25: 7650–7661.

    Article  CAS  Google Scholar 

  • Klarmann GJ, Hurt EM, Mathews LA, Zhang X, Duhagon MA, Mistree T et al. (2009). Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin Exp Metastasis 26: 433–446.

    Article  CAS  Google Scholar 

  • Koreckij TD, Trauger RJ, Montgomery RB, Pitts TE, Coleman I, Nguyen H et al. (2009). HE3235 inhibits growth of castration-resistant prostate cancer. Neoplasia 11: 1216–1225.

    Article  CAS  Google Scholar 

  • Kwon M, MacLeod TJ, Zhang Y, Waisman DM . (2005). S100A10, annexin A2, and annexin a2 heterotetramer as candidate plasminogen receptors. Front Biosci 10: 300–325.

    Article  CAS  Google Scholar 

  • Lang SH, Frame FM, Collins AT . (2009). Prostate cancer stem cells. J Pathol 217: 299–306.

    Article  CAS  Google Scholar 

  • Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K et al. (2004). Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 101: 811–816.

    Article  CAS  Google Scholar 

  • Larriba MJ, Casado-Vela J, Pendas-Franco N, Pena R, Garcia de Herreros A, Berciano MT et al. (2010). Novel snail1 target proteins in human colon cancer identified by proteomic analysis. PLoS One 5: e10221.

    Article  Google Scholar 

  • Liu J, Uygur B, Zhang Z, Shao L, Romero D, Vary C et al. (2010). Slug inhibits proliferation of human prostate cancer cells via downregulation of cyclin D1 expression. Prostate 70: 1768–1777.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Machesky LM, Tang HR . (2009). Actin-based protrusions: promoters or inhibitors of cancer invasion? Cancer Cell 16: 5–7.

    Article  CAS  Google Scholar 

  • Mathias RA, Simpson RJ . (2009). Towards understanding epithelial-mesenchymal transition: a proteomics perspective. Biochim Biophys Acta 1794: 1325–1331.

    Article  CAS  Google Scholar 

  • Maul RS, Chang DD . (1999). EPLIN, epithelial protein lost in neoplasm. Oncogene 18: 7838–7841.

    Article  CAS  Google Scholar 

  • Maul RS, Song Y, Amann KJ, Gerbin SC, Pollard TD, Chang DD . (2003). EPLIN regulates actin dynamics by cross-linking and stabilizing filaments. J Cell Biol 160: 399–407.

    Article  CAS  Google Scholar 

  • McKeithen D, Graham T, Chung LW, Odero-Marah V . (2010). Snail transcription factor regulates neuroendocrine differentiation in LNCaP prostate cancer cells. Prostate 70: 982–992.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Connell PA, Surette AP, Liwski RS, Svenningsson P, Waisman DM . (2010). S100A10 regulates plasminogen-dependent macrophage invasion. Blood 116: 1136–1146.

    Article  CAS  Google Scholar 

  • Percipalle P, Raju CS, Fukuda N . (2009). Actin-associated hnRNP proteins as transacting factors in the control of mRNA transport and localization. RNA Biol 6: 171–174.

    Article  CAS  Google Scholar 

  • Pokutta S, Weis WI . (2007). Structure and mechanism of cadherins and catenins in cell-cell contacts. Annu Rev Cell Dev Biol 23: 237–261.

    Article  CAS  Google Scholar 

  • Renehan AG, Zwahlen M, Minder C, O'Dwyer ST, Shalet SM, Egger M . (2004). Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363: 1346–1353.

    Article  CAS  Google Scholar 

  • Sakko AJ, Ricciardelli C, Mayne K, Suwiwat S, LeBaron RG, Marshall VR et al. (2003). Modulation of prostate cancer cell attachment to matrix by versican. Cancer Res 63: 4786–4791.

    CAS  PubMed  Google Scholar 

  • Schmalhofer O, Brabletz S, Brabletz T . (2009). E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 28: 151–166.

    Article  CAS  Google Scholar 

  • Schneider R, Grosschedl R . (2007). Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21: 3027–3043.

    Article  CAS  Google Scholar 

  • Smith SC, Theodorescu D . (2009). Learning therapeutic lessons from metastasis suppressor proteins. Nat Rev Cancer 9: 253–264.

    Article  CAS  Google Scholar 

  • Song Y, Maul RS, Gerbin CS, Chang DD . (2002). Inhibition of anchorage-independent growth of transformed NIH3T3 cells by epithelial protein lost in neoplasm (EPLIN) requires localization of EPLIN to actin cytoskeleton. Mol Biol Cell 13: 1408–1416.

    Article  CAS  Google Scholar 

  • Sung SY, Hsieh CL, Law A, Zhau HE, Pathak S, Multani AS et al. (2008). Coevolution of prostate cancer and bone stroma in three-dimensional coculture: implications for cancer growth and metastasis. Cancer Res 68: 9996–10003.

    Article  CAS  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA . (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139: 871–890.

    Article  CAS  Google Scholar 

  • Thiolloy S, Rinker-Schaeffer CW . (2010). Thinking outside the box: using metastasis suppressors as molecular tools. Semin Cancer Biol 21: 89–98.

    Article  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G . (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 5116–5121.

    Article  CAS  Google Scholar 

  • Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA et al. (2005). Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8: 393–406.

    Article  CAS  Google Scholar 

  • Wei J, Xu G, Wu M, Zhang Y, Li Q, Liu P et al. (2008). Overexpression of vimentin contributes to prostate cancer invasion and metastasis via src regulation. Anticancer Res 28: 327–334.

    CAS  PubMed  Google Scholar 

  • Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A et al. (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11: 1487–1495.

    Article  CAS  Google Scholar 

  • Willipinski-Stapelfeldt B, Riethdorf S, Assmann V, Woelfle U, Rau T, Sauter G et al. (2005). Changes in cytoskeletal protein composition indicative of an epithelial-mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin Cancer Res 11: 8006–8014.

    Article  CAS  Google Scholar 

  • Wong SY, Haack H, Kissil JL, Barry M, Bronson RT, Shen SS et al. (2007). Protein 4.1B suppresses prostate cancer progression and metastasis. Proc Natl Acad Sci USA 104: 12784–12789.

    Article  CAS  Google Scholar 

  • Wu D, Zhau HE, Huang WC, Iqbal S, Habib FK, Sartor O et al. (2007). cAMP-responsive element-binding protein regulates vascular endothelial growth factor expression: implication in human prostate cancer bone metastasis. Oncogene 26: 5070–5077.

    Article  CAS  Google Scholar 

  • Xu J, Wang R, Xie ZH, Odero-Marah V, Pathak S, Multani A et al. (2006). Prostate cancer metastasis: role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis. Prostate 66: 1664–1673.

    Article  CAS  Google Scholar 

  • Yamazaki D, Kurisu S, Takenawa T . (2005). Regulation of cancer cell motility through actin reorganization. Cancer Sci 96: 379–386.

    Article  CAS  Google Scholar 

  • Yilmaz M, Christofori G . (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28: 15–33.

    Article  Google Scholar 

  • Yilmaz M, Christofori G . (2010). Mechanisms of motility in metastasizing cells. Mol Cancer Res 8: 629–642.

    Article  CAS  Google Scholar 

  • Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L et al. (2004). Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol 22: 2790–2799.

    Article  CAS  Google Scholar 

  • Zhang S, Zhau HE, Osunkoya AO, Iqbal S, Yang X, Fan S et al. (2010). Vascular endothelial growth factor regulates myeloid cell leukemia-1 expression through neuropilin-1-dependent activation of c-MET signaling in human prostate cancer cells. Mol Cancer 9: 9.

    Article  Google Scholar 

  • Zhau HE, Odero-Marah V, Lue HW, Nomura T, Wang R, Chu G et al. (2008). Epithelial to mesenchymal transition (EMT) in human prostate cancer: lessons learned from ARCaP model. Clin Exp Metastasis 25: 601–610.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Jin-Tang Dong for critical reading of the manuscript, and Dr Anthea Hammond for editorial assistance. This work was supported by the Department of Defense PC060566, American Cancer Society RSG-10-140-01, Georgia Cancer Coalition Cancer Research Award, Kennedy Seed Grant, Emory University Research Committee Award, Winship MPB Seed Grant (DW), National Cancer Institute grants P01 CA98912, R01 CA122602 and Department of Defense PC060866 (LWKC), Georgia Cancer Coalition Distinguished Scholar Grant (OK) and National Cancer Institute grant 1R43CA141870 (YAW).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H E Zhau or D Wu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Wang, X., Osunkoya, A. et al. EPLIN downregulation promotes epithelial–mesenchymal transition in prostate cancer cells and correlates with clinical lymph node metastasis. Oncogene 30, 4941–4952 (2011). https://doi.org/10.1038/onc.2011.199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.199

Keywords

This article is cited by

Search

Quick links