Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring V600EBRAF

Abstract

Identifying the spectrum of genetic alterations that cooperate with critical oncogenes to promote transformation provides a foundation for understanding the diversity of clinical phenotypes observed in human cancers. Here, we performed integrated analyses to identify genomic alterations that co-occur with oncogenic BRAF in melanoma and abrogate cellular dependence upon this oncogene. We identified concurrent mutational inactivation of the PTEN and RB1 tumor suppressors as a mechanism for loss of BRAF/MEK dependence in melanomas harboring V600EBRAF mutations. RB1 alterations were mutually exclusive with loss of p16INK4A, suggesting that whereas p16INK4A and RB1 may have overlapping roles in preventing tumor formation, tumors with loss of RB1 exhibit diminished dependence upon BRAF signaling for cell proliferation. These findings provide a genetic basis for the heterogeneity of clinical outcomes in patients treated with targeted inhibitors of the mitogen-activated protein kinase pathway. Our results also suggest a need for comprehensive screening for RB1 and PTEN inactivation in patients treated with RAF and MEK-selective inhibitors to determine whether these alterations are associated with diminished clinical benefit in patients whose cancers harbor mutant BRAF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adjei AA, Cohen RB, Franklin W, Morris C, Wilson D, Molina JR et al. (2008). Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol 26: 2139–2146.

    Article  CAS  Google Scholar 

  • Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H et al. (2010). Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467: 596–599.

    Article  CAS  Google Scholar 

  • Chellappan S, Kraus VB, Kroger B, Munger K, Howley PM, Phelps WC et al. (1992). Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc Natl Acad Sci USA 89: 4549–4553.

    Article  CAS  Google Scholar 

  • Chicas A, Wang X, Zhang C, McCurrach M, Zhao Z, Mert O et al. (2010). Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 17: 376–387.

    Article  CAS  Google Scholar 

  • Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky Jr WE et al. (2009). Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 41: 544–552.

    Article  CAS  Google Scholar 

  • Dankort D, Filenova E, Collado M, Serrano M, Jones K, McMahon M . (2007). A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev 21: 379–384.

    Article  CAS  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417: 949–954.

    Article  CAS  Google Scholar 

  • Demers GW, Espling E, Harry JB, Etscheid BG, Galloway DA . (1996). Abrogation of growth arrest signals by human papillomavirus type 16 E7 is mediated by sequences required for transformation. J Virol 70: 6862–6869.

    CAS  Google Scholar 

  • Draper GJ, Sanders BM, Kingston JE . (1986). Second primary neoplasms in patients with retinoblastoma. Br J Cancer 53: 661–671.

    Article  CAS  Google Scholar 

  • Dummer R, Robert C, Chapman P, Sosman J, Middleton M, Bastholt K et al. (2008). AZD6244 (ARRY-142886) vs temozolomide (TMZ) in patients (pts) with advanced melanoma: an open-label, randomized, multicenter, phase II study. J Clin Oncol 2 (20 May Suppl): abstr. 9033.

    Article  Google Scholar 

  • Dyson N, Howley PM, Munger K, Harlow E . (1989). The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243: 934–937.

    Article  CAS  Google Scholar 

  • Eng C, Li FP, Abramson DH, Ellsworth RM, Wong FL, Goldman MB et al. (1993). Mortality from second tumors among long-term survivors of retinoblastoma. J Natl Cancer Inst 85: 1121–1128.

    Article  CAS  Google Scholar 

  • Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA et al. (2010). Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363: 809–819.

    Article  CAS  Google Scholar 

  • Gonzalgo ML, Bender CM, You EH, Glendening JM, Flores JF, Walker GJ et al. (1997). Low frequency of p16/CDKN2A methylation in sporadic melanoma: comparative approaches for methylation analysis of primary tumors. Cancer Res 57: 5336–5347.

    CAS  Google Scholar 

  • Gopal YN, Deng W, Woodman SE, Komurov K, Ram P, Smith PD et al. (2010). Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Res 70: 8736–8747.

    Article  CAS  Google Scholar 

  • Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R et al. (2010). RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464: 431–435.

    Article  CAS  Google Scholar 

  • Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N et al. (2010). Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140: 209–221.

    Article  CAS  Google Scholar 

  • Hingorani SR, Jacobetz MA, Robertson GP, Herlyn M, Tuveson DA . (2003). Suppression of BRAF(V599E) in human melanoma abrogates transformation. Cancer Res 63: 5198–5202.

    CAS  Google Scholar 

  • Janakiraman M, Vakiani E, Zeng Z, Pratilas CA, Taylor BS, Chitale D et al. (2010). Genomic and biological characterization of exon 4 KRAS mutations in human cancer. Cancer Res 70: 5901–5911.

    Article  CAS  Google Scholar 

  • Joseph EW, Pratilas CA, Poulikakos PI, Tadi M, Wang W, Taylor BS et al. (2010). The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci USA 107: 14903–14908.

    Article  CAS  Google Scholar 

  • Knudsen ES, Knudsen KE . (2008). Tailoring to RB: tumour suppressor status and therapeutic response. Nat Rev Cancer 8: 714–724.

    Article  CAS  Google Scholar 

  • Kumar R, Sauroja I, Punnonen K, Jansen C, Hemminki K . (1998). Selective deletion of exon 1 beta of the p19ARF gene in metastatic melanoma cell lines. Genes Chromosomes Cancer 23: 273–277.

    Article  CAS  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436: 720–724.

    Article  CAS  Google Scholar 

  • Munger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM . (1989). Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J 8: 4099–4105.

    Article  CAS  Google Scholar 

  • Nusse M, Beisker W, Hoffmann C, Tarnok A . (1990). Flow cytometric analysis of G1- and G2/M-phase subpopulations in mammalian cell nuclei using side scatter and DNA content measurements. Cytometry 11: 813–821.

    Article  CAS  Google Scholar 

  • Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E, Kuffa P et al. (2004). Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol 11: 1192–1197.

    Article  CAS  Google Scholar 

  • Ohta M, Nagai H, Shimizu M, Rasio D, Berd D, Mastrangelo M et al. (1994). Rarity of somatic and germline mutations of the cyclin-dependent kinase 4 inhibitor gene, CDK4I, in melanoma. Cancer Res 54: 5269–5272.

    CAS  Google Scholar 

  • Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD et al. (2005). BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15: 249–254.

    Article  CAS  Google Scholar 

  • Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N . (2010). RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464: 427–430.

    Article  CAS  Google Scholar 

  • Pratilas CA, Hanrahan AJ, Halilovic E, Persaud Y, Soh J, Chitale D et al. (2008). Genetic predictors of MEK dependence in non-small cell lung cancer. Cancer Res 68: 9375–9383.

    Article  CAS  Google Scholar 

  • Psyrri A, DeFilippis RA, Edwards AP, Yates KE, Manuelidis L, DiMaio D . (2004). Role of the retinoblastoma pathway in senescence triggered by repression of the human papillomavirus E7 protein in cervical carcinoma cells. Cancer Res 64: 3079–3086.

    Article  CAS  Google Scholar 

  • Sebolt-Leopold JS, English JM . (2006). Mechanisms of drug inhibition of signalling molecules. Nature 441: 457–462.

    Article  CAS  Google Scholar 

  • Sebolt-Leopold JS, Herrera R . (2004). Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4: 937–947.

    Article  CAS  Google Scholar 

  • Sherr CJ . (2006). Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6: 663–673.

    Article  CAS  Google Scholar 

  • Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A et al. (2006). BRAF mutation predicts sensitivity to MEK inhibition. Nature 439: 358–362.

    Article  CAS  Google Scholar 

  • Sondergaard JN, Nazarian R, Wang Q, Guo D, Hsueh T, Mok S et al. (2010). Differential sensitivity of melanoma cell lines with BRAFV600E mutation to the specific Raf inhibitor PLX4032. J Transl Med 8: 39.

    Article  Google Scholar 

  • Taylor BS, Barretina J, Socci ND, Decarolis P, Ladanyi M, Meyerson M et al. (2008). Functional copy-number alterations in cancer. PLoS ONE 3: e3179.

    Article  Google Scholar 

  • The Cancer Genome Atlas Research Network (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061–1068.

    Article  Google Scholar 

  • Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM et al. (2007). High-throughput oncogene mutation profiling in human cancer. Nat Genet 39: 347–351.

    Article  CAS  Google Scholar 

  • Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S et al. (2008). Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci USA 105: 3041–3046.

    Article  CAS  Google Scholar 

  • Tsai J, Zhang J, Bremer R, Artis R, Hirth P, Bollag G . (2006). Development of a novel inhibitor of cogenic b-raf. AACR Meeting Abstracts 2006: 571a.

    Google Scholar 

  • Venkatraman ES, Olshen AB . (2007). A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23: 657–663.

    Article  CAS  Google Scholar 

  • Wellbrock C, Ogilvie L, Hedley D, Karasarides M, Martin J, Niculescu-Duvaz D et al. (2004). V599EB-RAF is an oncogene in melanocytes. Cancer Res 64: 2338–2342.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Meenhard Herlyn and Kate Nathanson (University of Pennsylvania) and Dr Øystein Fodstad (Department of Tumor Biology of The Norwegian Radium Hospital, Norway) for kindly providing cell lines. This study was supported by grants from the National Institutes of Health (DBS), the Kimmel Foundation (DBS), Golfers-Against-Cancer (DBS), the Melanoma Research Alliance (DBS) and STARR Foundation (DBS). BST is the David H Koch Fellow in cancer genomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D B Solit.

Ethics declarations

Competing interests

David Solit has received honoraria and research funding from AstraZeneca, and had an advisory role with Roche. Gideon Bollag is an employee of Plexxikon Inc.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, F., Persaud, Y., Pratilas, C. et al. Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring V600EBRAF. Oncogene 31, 446–457 (2012). https://doi.org/10.1038/onc.2011.250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.250

Keywords

This article is cited by

Search

Quick links