Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Deubiquitinases in cancer: new functions and therapeutic options

Abstract

Deubiquitinases (DUBs) have fundamental roles in the ubiquitin system through their ability to specifically deconjugate ubiquitin from targeted proteins. The human genome encodes at least 98 DUBs, which can be grouped into 6 families, reflecting the need for specificity in their function. The activity of these enzymes affects the turnover rate, activation, recycling and localization of multiple proteins, which in turn is essential for cell homeostasis, protein stability and a wide range of signaling pathways. Consistent with this, altered DUB function has been related to several diseases, including cancer. Thus, multiple DUBs have been classified as oncogenes or tumor suppressors because of their regulatory functions on the activity of other proteins involved in tumor development. Therefore, recent studies have focused on pharmacological intervention on DUB activity as a rationale to search for novel anticancer drugs. This strategy may benefit from our current knowledge of the physiological regulatory mechanisms of these enzymes and the fact that growth of several tumors depends on the normal activity of certain DUBs. Further understanding of these processes may provide answers to multiple remaining questions on DUB functions and lead to the development of DUB-targeting strategies to expand the repertoire of molecular therapies against cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adler AS, Littlepage LE, Lin M, Kawahara TL, Wong DJ, Werb Z et al. (2008). CSN5 isopeptidase activity links COP9 signalosome activation to breast cancer progression. Cancer Res 68: 506–515.

    CAS  Google Scholar 

  • Al-Hakim A, Escribano-Diaz C, Landry MC, O'Donnell L, Panier S, Szilard RK et al. (2010). The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amst) 9: 1229–1240.

    CAS  Google Scholar 

  • Al-Hakim AK, Zagorska A, Chapman L, Deak M, Peggie M, Alessi DR . (2008). Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. Biochem J 411: 249–260.

    CAS  Google Scholar 

  • Alwan HA, van Leeuwen JE . (2007). UBPY-mediated epidermal growth factor receptor (EGFR) de-ubiquitination promotes EGFR degradation. J Biol Chem 282: 1658–1669.

    CAS  Google Scholar 

  • Amerik AY, Hochstrasser M . (2004). Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 1695: 189–207.

    CAS  Google Scholar 

  • Aressy B, Jullien D, Cazales M, Marcellin M, Bugler B, Burlet-Schiltz O et al. (2010). A screen for deubiquitinating enzymes involved in the G/M checkpoint identifies USP50 as a regulator of HSP90-dependent Wee1 stability. Cell Cycle 9: 3815–3822.

    CAS  Google Scholar 

  • Atanassov BS, Evrard YA, Multani AS, Zhang Z, Tora L, Devys D et al. (2009). Gcn5 and SAGA regulate shelterin protein turnover and telomere maintenance. Mol Cell 35: 352–364.

    CAS  Google Scholar 

  • Atanassov BS, Koutelou E, Dent SY . (2011). The role of deubiquitinating enzymes in chromatin regulation. FEBS Lett 585: 2016–2023.

    CAS  Google Scholar 

  • Baek KH . (2006). Cytokine-regulated protein degradation by the ubiquitination system. Curr Protein Pept Sci 7: 171–177.

    CAS  Google Scholar 

  • Baek KH, Kim MS, Kim YS, Shin JM, Choi HK . (2004). DUB-1A, a novel deubiquitinating enzyme subfamily member, is polyubiquitinated and cytokine-inducible in B-lymphocytes. J Biol Chem 279: 2368–2376.

    CAS  Google Scholar 

  • Balakirev MY, Tcherniuk SO, Jaquinod M, Chroboczek J . (2003). Otubains: a new family of cysteine proteases in the ubiquitin pathway. EMBO Rep 4: 517–522.

    CAS  Google Scholar 

  • Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE . (2011). Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov 10: 29–46.

    CAS  Google Scholar 

  • Bott M, Brevet M, Taylor BS, Shimizu S, Ito T, Wang L et al. (2011). The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet 43: 668–672.

    CAS  Google Scholar 

  • Bremm A, Freund SM, Komander D . (2010). Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat Struct Mol Biol 17: 939–947.

    CAS  Google Scholar 

  • Brooks CL, Li M, Hu M, Shi Y, Gu W . (2007). The p53—Mdm2—HAUSP complex is involved in p53 stabilization by HAUSP. Oncogene 26: 7262–7266.

    CAS  Google Scholar 

  • Brummelkamp TR, Nijman SM, Dirac AM, Bernards R . (2003). Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 424: 797–801.

    CAS  Google Scholar 

  • Burnett B, Li F, Pittman RN . (2003). The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum Mol Genet 12: 3195–3205.

    CAS  Google Scholar 

  • Burrows JF, McGrattan MJ, Rascle A, Humbert M, Baek KH, Johnston JA . (2004). DUB-3, a cytokine-inducible deubiquitinating enzyme that blocks proliferation. J Biol Chem 279: 13993–14000.

    CAS  Google Scholar 

  • Cao Z, Wu X, Yen L, Sweeney C, Carraway III KL . (2007). Neuregulin-induced ErbB3 downregulation is mediated by a protein stability cascade involving the E3 ubiquitin ligase Nrdp1. Mol Cell Biol 27: 2180–2188.

    CAS  Google Scholar 

  • Clague MJ, Coulson JM, Urbe S . (2008). Deciphering histone 2A deubiquitination. Genome Biol 9: 202.

    Google Scholar 

  • Clague MJ, Urbe S . (2006). Endocytosis: the DUB version. Trends Cell Biol 16: 551–559.

    CAS  Google Scholar 

  • Colland F . (2010). The therapeutic potential of deubiquitinating enzyme inhibitors. Biochem Soc Trans 38: 137–143.

    CAS  Google Scholar 

  • Colland F, Formstecher E, Jacq X, Reverdy C, Planquette C, Conrath S et al. (2009). Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells. Mol Cancer Ther 8: 2286–2295.

    CAS  Google Scholar 

  • Colombo M, Vallese S, Peretto I, Jacq X, Rain JC, Colland F et al. (2010). Synthesis and biological evaluation of 9-oxo-9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile analogues as potential inhibitors of deubiquitinating enzymes. Chem Med Chem 5: 552–558.

    CAS  Google Scholar 

  • Cooper EM, Cutcliffe C, Kristiansen TZ, Pandey A, Pickart CM, Cohen RE . (2009). K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J 28: 621–631.

    CAS  Google Scholar 

  • Coornaert B, Baens M, Heyninck K, Bekaert T, Haegman M, Staal J et al. (2008). T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat Immunol 9: 263–271.

    CAS  Google Scholar 

  • Crawford LJ, Walker B, Irvine AE . (2011). Proteasome inhibitors in cancer therapy. J Cell Commun Signal 5: 101–110.

    Google Scholar 

  • Chan DA, Giaccia AJ . (2011). Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov 10: 351–364.

    CAS  Google Scholar 

  • Chen M, Gutierrez GJ, Ronai ZA . (2011). Ubiquitin-recognition protein Ufd1 couples the endoplasmic reticulum (ER) stress response to cell cycle control. Proc Natl Acad Sci USA 108: 9119–9124.

    CAS  Google Scholar 

  • Dammer EB, Na CH, Xu P, Seyfried NT, Duong DM, Cheng D et al. (2011). Polyubiquitin linkage profiles in three models of proteolytic stress suggest etiology of Alzheimer disease. J Biol Chem 286: 10457–10465.

    CAS  Google Scholar 

  • Daviet L, Colland F . (2008). Targeting ubiquitin specific proteases for drug discovery. Biochimie 90: 270–283.

    CAS  Google Scholar 

  • Dayal S, Sparks A, Jacob J, Allende-Vega N, Lane DP, Saville MK . (2009). Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53. J Biol Chem 284: 5030–5041.

    CAS  Google Scholar 

  • de la Vega M, Kelvin AA, Dunican DJ, McFarlane C, Burrows JF, Jaworski J et al. (2011). The deubiquitinating enzyme USP17 is essential for GTPase subcellular localization and cell motility. Nat Commun 2: 259.

    Google Scholar 

  • Drag M, Salvesen GS . (2010). Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 9: 690–701.

    CAS  Google Scholar 

  • Duex JE, Comeau L, Sorkin A, Purow B, Kefas B . (2011). USP18 regulates EGF receptor expression and cancer cell survival via microrna-7. J Biol Chem 286: 25377–25386.

    CAS  Google Scholar 

  • Duex JE, Sorkin A . (2009). RNA interference screen identifies Usp18 as a regulator of epidermal growth factor receptor synthesis. Mol Biol Cell 20: 1833–1844.

    CAS  Google Scholar 

  • Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M et al. (2009). FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination. Cell 136: 123–135.

    CAS  Google Scholar 

  • Durkop H, Hirsch B, Hahn C, Foss HD, Stein H . (2003). Differential expression and function of A20 and TRAF1 in Hodgkin lymphoma and anaplastic large cell lymphoma and their induction by CD30 stimulation. J Pathol 200: 229–239.

    Google Scholar 

  • Eletr ZM, Wilkinson KD . (2011). An emerging model for BAP1's role in regulating cell cycle progression. Cell Biochem Biophys 60: 3–11.

    CAS  Google Scholar 

  • Endo A, Matsumoto M, Inada T, Yamamoto A, Nakayama KI, Kitamura N et al. (2009). Nucleolar structure and function are regulated by the deubiquitylating enzyme USP36. J Cell Sci 122: 678–686.

    CAS  Google Scholar 

  • Enesa K, Ito K, Luong le A, Thorbjornsen I, Phua C, To Y et al. (2008a). Hydrogen peroxide prolongs nuclear localization of NF-kappaB in activated cells by suppressing negative regulatory mechanisms. J Biol Chem 283: 18582–18590.

    CAS  Google Scholar 

  • Enesa K, Zakkar M, Chaudhury H, Luong le A, Rawlinson L, Mason JC et al. (2008b). NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 283: 7036–7045.

    CAS  Google Scholar 

  • Fan YH, Yu Y, Mao RF, Tan XJ, Xu GF, Zhang H et al. (2011). USP4 targets TAK1 to downregulate TNFalpha-induced NF-kappaB activation. Cell Death Differ 18: 1547–1560.

    CAS  Google Scholar 

  • Feng L, Wang J, Chen J . (2010). The Lys63-specific deubiquitinating enzyme BRCC36 is regulated by two scaffold proteins localizing in different subcellular compartments. J Biol Chem 285: 30982–30988.

    CAS  Google Scholar 

  • Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D et al. (2011). COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39: D945–D950.

    CAS  Google Scholar 

  • Frederick A, Rolfe M, Chiu MI . (1998). The human UNP locus at 3p21.31 encodes two tissue-selective, cytoplasmic isoforms with deubiquitinating activity that have reduced expression in small cell lung carcinoma cell lines. Oncogene 16: 153–165.

    CAS  Google Scholar 

  • Freije JM, Fraile JM, Lopez-Otin C . (2011). Protease addiction and synthetic lethality in cancer. Front Oncol 1 (doi:10.3389/fonc.2011.00025).

  • Gao J, Sun L, Huo L, Liu M, Li D, Zhou J . (2010). CYLD regulates angiogenesis by mediating vascular endothelial cell migration. Blood 115: 4130–4137.

    CAS  Google Scholar 

  • Gilbert RE, Huang Q, Thai K, Advani SL, Lee K, Yuen DA et al. (2011). Histone deacetylase inhibition attenuates diabetes-associated kidney growth: potential role for epigenetic modification of the epidermal growth factor receptor. Kidney Int 79: 1312–1321.

    CAS  Google Scholar 

  • Glinsky GV . (2005). Death-from-cancer signatures and stem cell contribution to metastatic cancer. Cell Cycle 4: 1171–1175.

    CAS  Google Scholar 

  • Gonzalez-Navajas JM, Law J, Nguyen KP, Bhargava M, Corr MP, Varki N et al. (2010). Interleukin 1 receptor signaling regulates DUBA expression and facilitates Toll-like receptor 9-driven antiinflammatory cytokine production. J Exp Med 207: 2799–2807.

    CAS  Google Scholar 

  • Graner E, Tang D, Rossi S, Baron A, Migita T, Weinstein LJ et al. (2004). The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell 5: 253–261.

    CAS  Google Scholar 

  • Gray DA, Inazawa J, Gupta K, Wong A, Ueda R, Takahashi T . (1995). Elevated expression of Unph, a proto-oncogene at 3p21.3, in human lung tumors. Oncogene 10: 2179–2183.

    CAS  Google Scholar 

  • Guedat P, Colland F . (2007). Patented small molecule inhibitors in the ubiquitin proteasome system. BMC Biochem 8 (Suppl 1): S14.

    Google Scholar 

  • Guervilly JH, Renaud E, Takata M, Rosselli F . (2011). USP1 deubiquitinase maintains phosphorylated CHK1 by limiting its DDB1-dependent degradation. Hum Mol Genet 20: 2171–2181.

    CAS  Google Scholar 

  • Gupta K, Chevrette M, Gray DA . (1994). The Unp proto-oncogene encodes a nuclear protein. Oncogene 9: 1729–1731.

    CAS  Google Scholar 

  • Guterman A, Glickman MH . (2004a). Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome. J Biol Chem 279: 1729–1738.

    CAS  Google Scholar 

  • Guterman A, Glickman MH . (2004b). Deubiquitinating enzymes are IN/(trinsic to proteasome function). Curr Protein Pept Sci 5: 201–211.

    CAS  Google Scholar 

  • Harbour JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA et al. (2010). Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330: 1410–1413.

    CAS  Google Scholar 

  • Harhaj EW, Dixit VM . (2011). Deubiquitinases in the regulation of NF-kappaB signaling. Cell Res 21: 22–39.

    CAS  Google Scholar 

  • Harris SL, Levine AJ . (2005). The p53 pathway: positive and negative feedback loops. Oncogene 24: 2899–2908.

    CAS  Google Scholar 

  • Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH . (1997). Integrating genetic approaches into the discovery of anticancer drugs. Science 278: 1064–1068.

    CAS  Google Scholar 

  • Hellerbrand C, Bumes E, Bataille F, Dietmaier W, Massoumi R, Bosserhoff AK . (2007). Reduced expression of CYLD in human colon and hepatocellular carcinomas. Carcinogenesis 28: 21–27.

    CAS  Google Scholar 

  • Hershko A, Heller H, Elias S, Ciechanover A . (1983). Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258: 8206–8214.

    CAS  Google Scholar 

  • Hirayama K, Aoki S, Nishikawa K, Matsumoto T, Wada K . (2007). Identification of novel chemical inhibitors for ubiquitin C-terminal hydrolase-L3 by virtual screening. Bioorg Med Chem 15: 6810–6818.

    CAS  Google Scholar 

  • Honma K, Tsuzuki S, Nakagawa M, Tagawa H, Nakamura S, Morishima Y et al. (2009). TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas. Blood 114: 2467–2475.

    CAS  Google Scholar 

  • Hu M, Li P, Li M, Li W, Yao T, Wu JW et al. (2002). Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111: 1041–1054.

    CAS  Google Scholar 

  • Hu M, Li P, Song L, Jeffrey PD, Chenova TA, Wilkinson KD et al. (2005). Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J 24: 3747–3756.

    CAS  Google Scholar 

  • Huang TT, Nijman SM, Mirchandani KD, Galardy PJ, Cohn MA, Haas W et al. (2006). Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol 8: 339–347.

    CAS  Google Scholar 

  • Huang X, Langelotz C, Hetfeld-Pechoc BK, Schwenk W, Dubiel W . (2009). The COP9 signalosome mediates beta-catenin degradation by deneddylation and blocks adenomatous polyposis coli destruction via USP15. J Mol Biol 391: 691–702.

    CAS  Google Scholar 

  • Huang X, Summers MK, Pham V, Lill JR, Liu J, Lee G et al. (2011). Deubiquitinase USP37 is activated by CDK2 to antagonize APC(CDH1) and promote S phase entry. Mol Cell 42: 511–523.

    CAS  Google Scholar 

  • Hussain S, Foreman O, Perkins SL, Witzig TE, Miles RR, van Deursen J et al. (2010). The de-ubiquitinase UCH-L1 is an oncogene that drives the development of lymphoma in vivo by deregulating PHLPP1 and Akt signaling. Leukemia 24: 1641–1655.

    CAS  Google Scholar 

  • Hussain S, Zhang Y, Galardy PJ . (2009). DUBs and cancer: the role of deubiquitinating enzymes as oncogenes, non-oncogenes and tumor suppressors. Cell Cycle 8: 1688–1697.

    CAS  Google Scholar 

  • Hymowitz SG, Wertz IE . (2010). A20: from ubiquitin editing to tumour suppression. Nat Rev Cancer 10: 332–341.

    CAS  Google Scholar 

  • Ibarrola N, Kratchmarova I, Nakajima D, Schiemann WP, Moustakas A, Pandey A et al. (2004). Cloning of a novel signaling molecule, AMSH-2, that potentiates transforming growth factor beta signaling. BMC Cell Biol 5: 2.

    Google Scholar 

  • Ikeda F, Dikic I . (2008). Atypical ubiquitin chains: new molecular signals. ‘Protein Modifications: Beyond the Usual Suspects’ review series. EMBO Rep 9: 536–542.

    CAS  Google Scholar 

  • Jang MJ, Baek SH, Kim JH . (2011). UCH-L1 promotes cancer metastasis in prostate cancer cells through EMT induction. Cancer Lett 302: 128–135.

    CAS  Google Scholar 

  • Jaster R, Baek KH, D'Andrea AD . (1999). Analysis of cis-acting sequences and trans-acting factors regulating the interleukin-3 response element of the DUB-1 gene. Biochim Biophys Acta 1446: 308–316.

    CAS  Google Scholar 

  • Jenner MW, Leone PE, Walker BA, Ross FM, Johnson DC, Gonzalez D et al. (2007). Gene mapping and expression analysis of 16q loss of heterozygosity identifies WWOX and CYLD as being important in determining clinical outcome in multiple myeloma. Blood 110: 3291–3300.

    CAS  Google Scholar 

  • Jensen DE, Proctor M, Marquis ST, Gardner HP, Ha SI, Chodosh LA et al. (1998). BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene 16: 1097–1112.

    CAS  Google Scholar 

  • Joo HY, Zhai L, Yang C, Nie S, Erdjument-Bromage H, Tempst P et al. (2007). Regulation of cell cycle progression and gene expression by H2A deubiquitination. Nature 449: 1068–1072.

    CAS  Google Scholar 

  • Kaelin Jr WG . (2005). The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5: 689–698.

    CAS  Google Scholar 

  • Kapuria V, Peterson LF, Fang D, Bornmann WG, Talpaz M, Donato NJ . (2010). Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res 70: 9265–9276.

    CAS  Google Scholar 

  • Kessler BM, Edelmann MJ . (2011). PTMs in conversation: activity and function of deubiquitinating enzymes regulated via post-translational modifications. Cell Biochem Biophys 60: 21–38.

    CAS  Google Scholar 

  • Kim MS, Kim YK, Kim YS, Seong M, Choi JK, Baek KH . (2005). Deubiquitinating enzyme USP36 contains the PEST motif and is polyubiquitinated. Biochem Biophys Res Commun 330: 797–804.

    CAS  Google Scholar 

  • Klaus A, Birchmeier W . (2008). Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8: 387–398.

    CAS  Google Scholar 

  • Komander D, Clague MJ, Urbe S . (2009a). Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10: 550–563.

    CAS  Google Scholar 

  • Komander D, Lord CJ, Scheel H, Swift S, Hofmann K, Ashworth A et al. (2008). The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol Cell 29: 451–464.

    CAS  Google Scholar 

  • Komander D, Reyes-Turcu F, Licchesi JD, Odenwaelder P, Wilkinson KD, Barford D . (2009b). Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 10: 466–473.

    CAS  Google Scholar 

  • Kon N, Kobayashi Y, Li M, Brooks CL, Ludwig T, Gu W . (2010). Inactivation of HAUSP in vivo modulates p53 function. Oncogene 29: 1270–1279.

    CAS  Google Scholar 

  • Koulich E, Li X, DeMartino GN . (2008). Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol Biol Cell 19: 1072–1082.

    CAS  Google Scholar 

  • Kuhlbrodt K, Janiesch PC, Kevei E, Segref A, Barikbin R, Hoppe T . (2011). The Machado-Joseph disease deubiquitylase ATX-3 couples longevity and proteostasis. Nat Cell Biol 13: 273–281.

    CAS  Google Scholar 

  • Kuphal S, Shaw-Hallgren G, Eberl M, Karrer S, Aberger F, Bosserhoff AK et al. (2011). GLI1-dependent transcriptional repression of CYLD in basal cell carcinoma. Oncogene 30: 4523–4530.

    CAS  Google Scholar 

  • Lee BH, Lee MJ, Park S, Oh DC, Elsasser S, Chen PC et al. (2010). Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467: 179–184.

    CAS  Google Scholar 

  • Lee HJ, Kim MS, Kim YK, Oh YK, Baek KH . (2005). HAUSP, a deubiquitinating enzyme for p53, is polyubiquitinated, polyneddylated, and dimerized. FEBS Lett 579: 4867–4872.

    CAS  Google Scholar 

  • Li L, Soetandyo N, Wang Q, Ye Y . (2009). The zinc finger protein A20 targets TRAF2 to the lysosomes for degradation. Biochim Biophys Acta 1793: 346–353.

    CAS  Google Scholar 

  • Li Z, Na X, Wang D, Schoen SR, Messing EM, Wu G . (2002a). Ubiquitination of a novel deubiquitinating enzyme requires direct binding to von Hippel-Lindau tumor suppressor protein. J Biol Chem 277: 4656–4662.

    CAS  Google Scholar 

  • Li Z, Wang D, Messing EM, Wu G . (2005). VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1alpha. EMBO Rep 6: 373–378.

    CAS  Google Scholar 

  • Li Z, Wang D, Na X, Schoen SR, Messing EM, Wu G . (2002b). Identification of a deubiquitinating enzyme subfamily as substrates of the von Hippel-Lindau tumor suppressor. Biochem Biophys Res Commun 294: 700–709.

    CAS  Google Scholar 

  • Liang J, Saad Y, Lei T, Wang J, Qi D, Yang Q et al. (2010). MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling. J Exp Med 207: 2959–2973.

    CAS  Google Scholar 

  • Liu H, Buus R, Clague MJ, Urbe S . (2009). Regulation of ErbB2 receptor status by the proteasomal DUB POH1. PLoS One 4: e5544.

    Google Scholar 

  • Liu J, Chung HJ, Vogt M, Jin Y, Malide D, He L et al. (2011). JTV1 co-activates FBP to induce USP29 transcription and stabilize p53 in response to oxidative stress. EMBO J 30: 846–858.

    CAS  Google Scholar 

  • Liu Y, Lashuel HA, Choi S, Xing X, Case A, Ni J et al. (2003). Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. Chem Biol 10: 837–846.

    CAS  Google Scholar 

  • Lopez-Otin C, Bond JS . (2008). Proteases: multifunctional enzymes in life and disease. J Biol Chem 283: 30433–30437.

    CAS  Google Scholar 

  • Lopez-Otin C, Hunter T . (2010). The regulatory crosstalk between kinases and proteases in cancer. Nat Rev Cancer 10: 278–292.

    CAS  Google Scholar 

  • Lopez-Otin C, Overall CM . (2002). Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 3: 509–519.

    CAS  Google Scholar 

  • Love KR, Catic A, Schlieker C, Ploegh HL . (2007). Mechanisms, biology and inhibitors of deubiquitinating enzymes. Nat Chem Biol 3: 697–705.

    CAS  Google Scholar 

  • Lu Y, Adegoke OA, Nepveu A, Nakayama KI, Bedard N, Cheng D et al. (2009). USP19 deubiquitinating enzyme supports cell proliferation by stabilizing KPC1, a ubiquitin ligase for p27Kip1. Mol Cell Biol 29: 547–558.

    CAS  Google Scholar 

  • Lu Y, Bedard N, Chevalier S, Wing SS . (2011). Identification of distinctive patterns of USP19-mediated growth regulation in normal and malignant cells. PLoS One 6: e15936.

    CAS  Google Scholar 

  • Lui TT, Lacroix C, Ahmed SM, Goldenberg SJ, Leach CA, Daulat AM et al. (2011). The ubiquitin-specific protease USP34 regulates axin stability and Wnt/{beta}-catenin signaling. Mol Cell Biol 31: 2053–2065.

    CAS  Google Scholar 

  • Luise C, Capra M, Donzelli M, Mazzarol G, Jodice MG, Nuciforo P et al. (2011). An atlas of altered expression of deubiquitinating enzymes in human cancer. PLoS One 6: e15891.

    CAS  Google Scholar 

  • Luna-Vargas MP, Faesen AC, van Dijk WJ, Rape M, Fish A, Sixma TK . (2011). Ubiquitin-specific protease 4 is inhibited by its ubiquitin-like domain. EMBO Rep 12: 365–372.

    CAS  Google Scholar 

  • Maertens GN, El Messaoudi-Aubert S, Elderkin S, Hiom K, Peters G . (2010). Ubiquitin-specific proteases 7 and 11 modulate Polycomb regulation of the INK4a tumour suppressor. EMBO J 29: 2553–2565.

    CAS  Google Scholar 

  • Makarova KS, Aravind L, Koonin EV . (2000). A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends Biochem Sci 25: 50–52.

    CAS  Google Scholar 

  • Mao Y, Senic-Matuglia F, Di Fiore PP, Polo S, Hodsdon ME, De Camilli P . (2005). Deubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain. Proc Natl Acad Sci USA 102: 12700–12705.

    CAS  Google Scholar 

  • Mason SD, Joyce JA . (2011). Proteolytic networks in cancer. Trends Cell Biol 21: 228–237.

    CAS  Google Scholar 

  • Massoumi R, Chmielarska K, Hennecke K, Pfeifer A, Fassler R . (2006). Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell 125: 665–677.

    CAS  Google Scholar 

  • Massoumi R, Kuphal S, Hellerbrand C, Haas B, Wild P, Spruss T et al. (2009). Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma. J Exp Med 206: 221–232.

    CAS  Google Scholar 

  • Mauri PL, Riva M, Ambu D, De Palma A, Secundo F, Benazzi L et al. (2006). Ataxin-3 is subject to autolytic cleavage. FEBS J 273: 4277–4286.

    CAS  Google Scholar 

  • McCullough J, Clague MJ, Urbe S . (2004). AMSH is an endosome-associated ubiquitin isopeptidase. J Cell Biol 166: 487–492.

    CAS  Google Scholar 

  • McFarlane C, Kelvin AA, de la Vega M, Govender U, Scott CJ, Burrows JF et al. (2010). The deubiquitinating enzyme USP17 is highly expressed in tumor biopsies, is cell cycle regulated, and is required for G1-S progression. Cancer Res 70: 3329–3339.

    CAS  Google Scholar 

  • McNally RS, Davis BK, Clements CM, Accavitti-Loper MA, Mak TW, Ting JP . (2011). DJ-1 enhances cell survival through the binding of Cezanne, a negative regulator of NF-kappaB. J Biol Chem 286: 4098–4106.

    CAS  Google Scholar 

  • Meray RK, Lansbury Jr PT . (2007). Reversible monoubiquitination regulates the Parkinson disease-associated ubiquitin hydrolase UCH-L1. J Biol Chem 282: 10567–10575.

    CAS  Google Scholar 

  • Metzig M, Nickles D, Falschlehner C, Lehmann-Koch J, Straub BK, Roth W et al. (2011). An RNAi screen identifies USP2 as a factor required for TNF-alpha-induced NF-kappaB signaling. Int J Cancer 129: 607–618.

    CAS  Google Scholar 

  • Meulmeester E, Kunze M, Hsiao HH, Urlaub H, Melchior F . (2008). Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol Cell 30: 610–619.

    CAS  Google Scholar 

  • Mosesson Y, Mills GB, Yarden Y . (2008). Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer 8: 835–850.

    CAS  Google Scholar 

  • Mullally JE, Fitzpatrick FA . (2002). Pharmacophore model for novel inhibitors of ubiquitin isopeptidases that induce p53-independent cell death. Mol Pharmacol 62: 351–358.

    CAS  Google Scholar 

  • Murai J, Yang K, Dejsuphong D, Hirota K, Takeda S, D'Andrea AD . (2011). The USP1/UAF1 complex promotes double-strand break repair through homologous recombination. Mol Cell Biol 31: 2462–2469.

    CAS  Google Scholar 

  • Nagai H, Noguchi T, Homma K, Katagiri K, Takeda K, Matsuzawa A et al. (2009). Ubiquitin-like sequence in ASK1 plays critical roles in the recognition and stabilization by USP9X and oxidative stress-induced cell death. Mol Cell 36: 805–818.

    CAS  Google Scholar 

  • Nakamura N, Hirose S . (2008). Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Mol Biol Cell 19: 1903–1911.

    CAS  Google Scholar 

  • Navon A, Ciechanover A . (2009). The 26 S proteasome: from basic mechanisms to drug targeting. J Biol Chem 284: 33713–33718.

    CAS  Google Scholar 

  • Nicastro G, Menon RP, Masino L, Knowles PP, McDonald NQ, Pastore A . (2005). The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Proc Natl Acad Sci USA 102: 10493–10498.

    CAS  Google Scholar 

  • Niendorf S, Oksche A, Kisser A, Lohler J, Prinz M, Schorle H et al. (2007). Essential role of ubiquitin-specific protease 8 for receptor tyrosine kinase stability and endocytic trafficking in vivo. Mol Cell Biol 27: 5029–5039.

    CAS  Google Scholar 

  • Nijman SM, Huang TT, Dirac AM, Brummelkamp TR, Kerkhoven RM, D'Andrea AD et al. (2005). The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell 17: 331–339.

    CAS  Google Scholar 

  • Novak U, Rinaldi A, Kwee I, Nandula SV, Rancoita PM, Compagno M et al. (2009). The NF-{kappa}B negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas. Blood 113: 4918–4921.

    CAS  Google Scholar 

  • Oh KH, Yang SW, Park JM, Seol JH, Iemura S, Natsume T et al. (2011). Control of AIF-mediated cell death by antagonistic functions of CHIP ubiquitin E3 ligase and USP2 deubiquitinating enzyme. Cell Death Differ 18: 1326–1336.

    CAS  Google Scholar 

  • Oliveira AM, Hsi BL, Weremowicz S, Rosenberg AE, Dal Cin P, Joseph N et al. (2004). USP6 (Tre2) fusion oncogenes in aneurysmal bone cyst. Cancer Res 64: 1920–1923.

    CAS  Google Scholar 

  • Pardali K, Moustakas A . (2007). Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775: 21–62.

    CAS  Google Scholar 

  • Parsons JL, Dianova II, Khoronenkova SV, Edelmann MJ, Kessler BM, Dianov GL . (2011). USP47 is a deubiquitylating enzyme that regulates base excision repair by controlling steady-state levels of DNA polymerase beta. Mol Cell 41: 609–615.

    CAS  Google Scholar 

  • Pereg Y, Liu BY, O'Rourke KM, Sagolla M, Dey A, Komuves L et al. (2010). Ubiquitin hydrolase Dub3 promotes oncogenic transformation by stabilizing Cdc25A. Nat Cell Biol 12: 400–406.

    CAS  Google Scholar 

  • Pickart CM, Rose IA . (1985). Ubiquitin carboxyl-terminal hydrolase acts on ubiquitin carboxyl-terminal amides. J Biol Chem 260: 7903–7910.

    CAS  Google Scholar 

  • Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, Bernards R et al. (2007). The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol 9: 765–774.

    CAS  Google Scholar 

  • Prasad S, Ravindran J, Aggarwal BB . (2010). NF-kappaB and cancer: how intimate is this relationship. Mol Cell Biochem 336: 25–37.

    CAS  Google Scholar 

  • Priolo C, Tang D, Brahamandan M, Benassi B, Sicinska E, Ogino S et al. (2006). The isopeptidase USP2a protects human prostate cancer from apoptosis. Cancer Res 66: 8625–8632.

    CAS  Google Scholar 

  • Puente XS, Lopez-Otin C . (2004). A genomic analysis of rat proteases and protease inhibitors. Genome Res 14: 609–622.

    CAS  Google Scholar 

  • Puente XS, Sanchez LM, Overall CM, Lopez-Otin C . (2003). Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4: 544–558.

    CAS  Google Scholar 

  • Quesada V, Diaz-Perales A, Gutierrez-Fernandez A, Garabaya C, Cal S, Lopez-Otin C . (2004). Cloning and enzymatic analysis of 22 novel human ubiquitin-specific proteases. Biochem Biophys Res Commun 314: 54–62.

    CAS  Google Scholar 

  • Quesada V, Ordonez GR, Sanchez LM, Puente XS, Lopez-Otin C . (2009). The Degradome database: mammalian proteases and diseases of proteolysis. Nucleic Acids Res 37: D239–D243.

    CAS  Google Scholar 

  • Rajan N, Elliott R, Clewes O, Mackay A, Reis-Filho JS, Burn J et al. (2011). Dysregulated TRK signalling is a therapeutic target in CYLD defective tumours. Oncogene 30: 4243–4260.

    CAS  Google Scholar 

  • Ramakrishna S, Suresh B, Baek KH . (2011a). The role of deubiquitinating enzymes in apoptosis. Cell Mol Life Sci 68: 15–26.

    CAS  Google Scholar 

  • Ramakrishna S, Suresh B, Lee EJ, Lee HJ, Ahn WS, Baek KH . (2011b). Lys-63-specific deubiquitination of SDS3 by USP17 regulates HDAC activity. J Biol Chem 286: 10505–10514.

    CAS  Google Scholar 

  • Rehman FL, Lord CJ, Ashworth A . (2010). Synthetic lethal approaches to breast cancer therapy. Nat Rev Clin Oncol 7: 718–724.

    CAS  Google Scholar 

  • Reiley W, Zhang M, Sun SC . (2004). Negative regulation of JNK signaling by the tumor suppressor CYLD. J Biol Chem 279: 55161–55167.

    CAS  Google Scholar 

  • Reiley WW, Jin W, Lee AJ, Wright A, Wu X, Tewalt EF et al. (2007). Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses. J Exp Med 204: 1475–1485.

    CAS  Google Scholar 

  • Reyes-Turcu FE, Ventii KH, Wilkinson KD . (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78: 363–397.

    CAS  Google Scholar 

  • Saggar S, Chernoff KA, Lodha S, Horev L, Kohl S, Honjo RS et al. (2008). CYLD mutations in familial skin appendage tumours. J Med Genet 45: 298–302.

    CAS  Google Scholar 

  • Sato Y, Yoshikawa A, Yamagata A, Mimura H, Yamashita M, Ookata K et al. (2008). Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature 455: 358–362.

    CAS  Google Scholar 

  • Schoenfeld AR, Apgar S, Dolios G, Wang R, Aaronson SA . (2004). BRCA2 is ubiquitinated in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the cellular response to DNA damage. Mol Cell Biol 24: 7444–7455.

    CAS  Google Scholar 

  • Schweitzer K, Bozko PM, Dubiel W, Naumann M . (2007). CSN controls NF-kappaB by deubiquitinylation of IkappaBalpha. EMBO J 26: 1532–1541.

    CAS  Google Scholar 

  • Schwickart M, Huang X, Lill JR, Liu J, Ferrando R, French DM et al. (2010). Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 463: 103–107.

    CAS  Google Scholar 

  • Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A et al. (2009). Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461: 809–813.

    CAS  Google Scholar 

  • Shan J, Zhao W, Gu W . (2009). Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol Cell 36: 469–476.

    CAS  Google Scholar 

  • Solimini NL, Luo J, Elledge SJ . (2007). Non-oncogene addiction and the stress phenotype of cancer cells. Cell 130: 986–988.

    CAS  Google Scholar 

  • Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J et al. (2008). The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455: 813–817.

    CAS  Google Scholar 

  • Sowa ME, Bennett EJ, Gygi SP, Harper JW . (2009). Defining the human deubiquitinating enzyme interaction landscape. Cell 138: 389–403.

    CAS  Google Scholar 

  • Staal J, Driege Y, Bekaert T, Demeyer A, Muyllaert D, Van Damme P et al. (2011). T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J 30: 1742–1752.

    CAS  Google Scholar 

  • Stegmeier F, Rape M, Draviam VM, Nalepa G, Sowa ME, Ang XL et al. (2007a). Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 446: 876–881.

    CAS  Google Scholar 

  • Stegmeier F, Sowa ME, Nalepa G, Gygi SP, Harper JW, Elledge SJ . (2007b). The tumor suppressor CYLD regulates entry into mitosis. Proc Natl Acad Sci USA 104: 8869–8874.

    CAS  Google Scholar 

  • Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK . (2007). The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J 26: 976–986.

    CAS  Google Scholar 

  • Sun H, Kapuria V, Peterson LF, Fang D, Bornmann WG, Bartholomeusz G et al. (2011). Bcr-Abl ubiquitination and Usp9x inhibition block kinase signaling and promote CML cell apoptosis. Blood 117: 3151–3162.

    CAS  Google Scholar 

  • Tauriello DV, Haegebarth A, Kuper I, Edelmann MJ, Henraat M, Canninga-van Dijk MR et al. (2010). Loss of the tumor suppressor CYLD enhances Wnt/beta-catenin signaling through K63-linked ubiquitination of Dvl. Mol Cell 37: 607–619.

    CAS  Google Scholar 

  • Tian X, Isamiddinova NS, Peroutka RJ, Goldenberg SJ, Mattern MR, Nicholson B et al. (2011). Characterization of selective ubiquitin and ubiquitin-like protease inhibitors using a fluorescence-based multiplex assay format. Assay Drug Dev Technol 9: 165–173.

    CAS  Google Scholar 

  • Todi SV, Winborn BJ, Scaglione KM, Blount JR, Travis SM, Paulson HL . (2009). Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. EMBO J 28: 372–382.

    CAS  Google Scholar 

  • Tran H, Hamada F, Schwarz-Romond T, Bienz M . (2008). Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes Dev 22: 528–542.

    CAS  Google Scholar 

  • Turk B . (2006). Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5: 785–799.

    CAS  Google Scholar 

  • Urbanik T, Kohler BC, Boger RJ, Worns MA, Heeger S, Otto G et al. (2011). Down-regulation of CYLD as a trigger for NF-kappaB activation and a mechanism of apoptotic resistance in hepatocellular carcinoma cells. Int J Oncol 38: 121–131.

    CAS  Google Scholar 

  • van der Horst A, de Vries-Smits AM, Brenkman AB, van Triest MH, van den Broek N, Colland F et al. (2006). FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol 8: 1064–1073.

    CAS  Google Scholar 

  • van Leuken RJ, Luna-Vargas MP, Sixma TK, Wolthuis RM, Medema RH . (2008). Usp39 is essential for mitotic spindle checkpoint integrity and controls mRNA-levels of aurora B. Cell Cycle 7: 2710–2719.

    CAS  Google Scholar 

  • Vendrell JA, Ghayad S, Ben-Larbi S, Dumontet C, Mechti N, Cohen PA . (2007). A20/TNFAIP3, a new estrogen-regulated gene that confers tamoxifen resistance in breast cancer cells. Oncogene 26: 4656–4667.

    CAS  Google Scholar 

  • Ventii KH, Wilkinson KD . (2008). Protein partners of deubiquitinating enzymes. Biochem J 414: 161–175.

    CAS  Google Scholar 

  • Verstrepen L, Carpentier I, Verhelst K, Beyaert R . (2009). ABINs: A20 binding inhibitors of NF-kappa B and apoptosis signaling. Biochem Pharmacol 78: 105–114.

    CAS  Google Scholar 

  • Virdee S, Ye Y, Nguyen DP, Komander D, Chin JW . (2010). Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nat Chem Biol 6: 750–757.

    CAS  Google Scholar 

  • Vogelstein B, Kinzler KW . (2004). Cancer genes and the pathways they control. Nat Med 10: 789–799.

    CAS  Google Scholar 

  • Vucic D, Dixit VM, Wertz IE . (2011). Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol 12: 439–452.

    CAS  Google Scholar 

  • Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S et al. (2004). De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430: 694–699.

    CAS  Google Scholar 

  • Wicks SJ, Haros K, Maillard M, Song L, Cohen RE, Dijke PT et al. (2005). The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-beta signalling. Oncogene 24: 8080–8084.

    CAS  Google Scholar 

  • Wilkinson KD . (1997). Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J 11: 1245–1256.

    CAS  Google Scholar 

  • Winborn BJ, Travis SM, Todi SV, Scaglione KM, Xu P, Williams AJ et al. (2008). The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains. J Biol Chem 283: 26436–26443.

    CAS  Google Scholar 

  • Xu G, Tan X, Wang H, Sun W, Shi Y, Burlingame S et al. (2010). Ubiquitin-specific peptidase 21 inhibits tumor necrosis factor alpha-induced nuclear factor kappaB activation via binding to and deubiquitinating receptor-interacting protein 1. J Biol Chem 285: 969–978.

    CAS  Google Scholar 

  • Xu M, Takanashi M, Oikawa K, Tanaka M, Nishi H, Isaka K et al. (2009). USP15 plays an essential role for caspase-3 activation during Paclitaxel-induced apoptosis. Biochem Biophys Res Commun 388: 366–371.

    CAS  Google Scholar 

  • Yamaguchi T, Kimura J, Miki Y, Yoshida K . (2007). The deubiquitinating enzyme USP11 controls an IkappaB kinase alpha (IKKalpha)-p53 signaling pathway in response to tumor necrosis factor alpha (TNFalpha). J Biol Chem 282: 33943–33948.

    CAS  Google Scholar 

  • Yang Y, Hou JQ, Qu LY, Wang GQ, Ju HW, Zhao ZW et al. (2007). [Differential expression of USP2, USP14 and UBE4A between ovarian serous cystadenocarcinoma and adjacent normal tissues]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 23: 504–506.

    CAS  Google Scholar 

  • Yao T, Song L, Jin J, Cai Y, Takahashi H, Swanson SK et al. (2008). Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Mol Cell 31: 909–917.

    CAS  Google Scholar 

  • Yoshida A, Yoneda-Kato N, Panattoni M, Pardi R, Kato JY . (2010). CSN5/Jab1 controls multiple events in the mammalian cell cycle. FEBS Lett 584: 4545–4552.

    CAS  Google Scholar 

  • Yoshida H, Jono H, Kai H, Li JD . (2005). The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 AND TRAF7. J Biol Chem 280: 41111–41121.

    CAS  Google Scholar 

  • Yu H, Mashtalir N, Daou S, Hammond-Martel I, Ross J, Sui G et al. (2010). The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and is a critical regulator of gene expression. Mol Cell Biol 30: 5071–5085.

    CAS  Google Scholar 

  • Yu J, Tao Q, Cheung KF, Jin H, Poon FF, Wang X et al. (2008). Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for hepatocellular carcinoma and other digestive tumors. Hepatology 48: 508–518.

    CAS  Google Scholar 

  • Yuan J, Luo K, Zhang L, Cheville JC, Lou Z . (2010). USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 140: 384–396.

    CAS  Google Scholar 

  • Zhang C, Cai TY, Zhu H, Yang LQ, Jiang H, Dong XW et al. (2011a). Synergistic antitumor activity of gemcitabine and ABT-737 in vitro and in vivo through disrupting the interaction of USP9X and Mcl-1. Mol Cancer Ther 10: 1264–1275.

    CAS  Google Scholar 

  • Zhang D, Zaugg K, Mak TW, Elledge SJ . (2006a). A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 126: 529–542.

    CAS  Google Scholar 

  • Zhang J, Stirling B, Temmerman ST, Ma CA, Fuss IJ, Derry JM et al. (2006b). Impaired regulation of NF-kappaB and increased susceptibility to colitis-associated tumorigenesis in CYLD-deficient mice. J Clin Invest 116: 3042–3049.

    CAS  Google Scholar 

  • Zhang X, Berger FG, Yang J, Lu X . (2011b). USP4 inhibits p53 through deubiquitinating and stabilizing ARF-BP1. EMBO J 30: 2177–2189.

    CAS  Google Scholar 

  • Zhang XY, Varthi M, Sykes SM, Phillips C, Warzecha C, Zhu W et al. (2008). The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol Cell 29: 102–111.

    Google Scholar 

  • Zhang Y . (2003). Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev 17: 2733–2740.

    CAS  Google Scholar 

  • Zhao B, Schlesiger C, Masucci MG, Lindsten K . (2009). The ubiquitin specific protease 4 (USP4) is a new player in the Wnt signalling pathway. J Cell Mol Med 13: 1886–1895.

    Google Scholar 

  • Zhu P, Zhou W, Wang J, Puc J, Ohgi KA, Erdjument-Bromage H et al. (2007a). A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol Cell 27: 609–621.

    CAS  Google Scholar 

  • Zhu X, Menard R, Sulea T . (2007b). High incidence of ubiquitin-like domains in human ubiquitin-specific proteases. Proteins 69: 1–7.

    CAS  Google Scholar 

Download references

Acknowledgements

Our study is supported by grants from Ministerio de Ciencia e Innovación-Spain, Fundación ‘M Botín’, PCTI-FICYT Asturias and European Union (FP7 MicroEnviMet). The Instituto Universitario de Oncología is supported by Obra Social Cajastur and Acción Transversal del Cáncer-RTICC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C López-Otín.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraile, J., Quesada, V., Rodríguez, D. et al. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 31, 2373–2388 (2012). https://doi.org/10.1038/onc.2011.443

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.443

Keywords

This article is cited by

Search

Quick links