Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

2-Deoxyglucose-induced toxicity is regulated by Bcl-2 family members and is enhanced by antagonizing Bcl-2 in lymphoma cell lines

Abstract

Targeting altered cancer cell metabolism with the glycolysis inhibitor, 2-deoxyglucose (2DG), is a viable therapeutic strategy, but the effects of 2DG on lymphoma cells and the mechanism of action are unknown. Five T-cell lymphoma lines and two B-cell lymphoma lines were shown to be highly sensitive to 2DG. Examination of the cell death pathway demonstrated pro-apoptotic protein Bax ‘activation’ and caspase cleavage in 2DG-treated cells. However, Q-VD-OPh, a potent inhibitor of caspase activity provided minimal protection from death. In contrast, overexpressing the anti-apoptotic protein Bcl-2 dramatically enhanced the survival of 2DG-treated cells that was negated by a Bcl-2 antagonist. BH3-only members, Bim and Bmf, were upregulated by 2DG, and shRNAs targeting Bim protected from 2DG toxicity demonstrating that Bim is a critical mediator of 2DG toxicity. 2DG also induced GADD153/CHOP expression, a marker of endoplasmic reticulum (ER) stress and a known activator of Bim. Mannose, a reagent known to alleviate ER stress, transiently protected from 2DG-induced cell death. Examination of the effects of 2DG on energy metabolism showed a drop in ATP levels by 30 min that was not affected by either Bcl-2 or mannose. These results demonstrate that ER stress appears to be rate limiting in 2DG-induced cell death in lymphoma cells, and this cell killing is regulated by the Bcl-2 family of proteins. Bcl-2 inhibition combined with 2DG may be an effective therapeutic strategy for lymphoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Adams JM, Cory S . (1998). The bcl-2 protein family: arbiters of cell survival. Science 281: 1322–1326.

    Article  CAS  PubMed  Google Scholar 

  • Aykin-Burns N, Ahmad IM, Zhu Y, Oberley LW, Spitz DR . (2009). Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J 418: 29–37.

    Article  CAS  PubMed  Google Scholar 

  • Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P et al. (2010). Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res 70: 2465–2475.

    CAS  PubMed  Google Scholar 

  • Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM . (2004). Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304: 596–600.

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Okayama H . (1987). High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7: 2745–2752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG et al. (2005). Differential targeting of prosurvival bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17: 393–403.

    Article  CAS  PubMed  Google Scholar 

  • Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T et al. (2001). BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8: 705–711.

    Article  CAS  PubMed  Google Scholar 

  • Chipuk JE, Green DR . (2005). Do inducers of apoptosis trigger caspase-independent cell death? Nat Rev Mol Cell Biol 6: 268–275.

    Article  CAS  PubMed  Google Scholar 

  • Crane RK, Sols A . (1954). The non-competitive inhibition of brain hexokinase by glucose-6-phosphate and related compounds. J Biol Chem 210: 597–606.

    CAS  PubMed  Google Scholar 

  • Dasmahapatra G, Lembersky D, Rahmani M, Kramer L, Friedberg J, Fisher RI et al. (2009). Bcl-2 antagonists interact synergistically with bortezomib in DLBCL cells in association with JNK activation and induction of ER stress. Cancer Biol Ther 8: 808–819.

    Article  CAS  PubMed  Google Scholar 

  • Egle A, Harris AW, Bouillet P, Cory S . (2004). Bim is a suppressor of myc-induced mouse B cell leukemia. Proc Natl Acad Sci USA 101: 6164–6169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Mjiyad N, Caro-Maldonado A, Ramirez-Peinado S, Munoz-Pinedo C . (2011). Sugar-free approaches to cancer cell killing. Oncogene 30: 253–264.

    Article  CAS  PubMed  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ . (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13: 1899–1911.

    Article  CAS  PubMed  Google Scholar 

  • Han SS, Peng L, Chung ST, DuBois W, Maeng SH, Shaffer AL et al. (2006). CDDO-imidazolide inhibits growth and survival of c-myc-induced mouse B cell and plasma cell neoplasms. Mol Cancer 5: 22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu YT, Youle RJ . (1998). Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J Biol Chem 273: 10777–10783.

    Article  CAS  PubMed  Google Scholar 

  • Huang DC, Strasser A . (2000). BH3-only proteins-essential initiators of apoptotic cell death. Cell 103: 839–842.

    Article  CAS  PubMed  Google Scholar 

  • Kane DJ, Ord T, Anton R, Bredesen DE . (1995). Expression of bcl-2 inhibits necrotic neural cell death. J Neurosci Res 40: 269–275.

    Article  CAS  PubMed  Google Scholar 

  • Kang MH, Kang YH, Szymanska B, Wilczynska-Kalak U, Sheard MA, Harned TM et al. (2007). Activity of vincristine, L-ASP, and dexamethasone against acute lymphoblastic leukemia is enhanced by the BH3-mimetic ABT-737 in vitro and in vivo. Blood 110: 2057–2066.

    Article  CAS  PubMed  Google Scholar 

  • Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N et al. (2002). Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22: 7405–7416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtoglu M, Gao N, Shang J, Maher JC, Lehrman MA, Wangpaichitr M et al. (2007). Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Mol Cancer Ther 6: 3049–3058.

    Article  CAS  PubMed  Google Scholar 

  • Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR et al. (2005). BH3 domains of BH3-only proteins differentially regulate bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17: 525–535.

    Article  CAS  PubMed  Google Scholar 

  • Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ . (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2: 183–192.

    Article  CAS  PubMed  Google Scholar 

  • Letai A, Sorcinelli MD, Beard C, Korsmeyer SJ . (2004). Antiapoptotic BCL-2 is required for maintenance of a model leukemia. Cancer Cell 6: 241–249.

    Article  CAS  PubMed  Google Scholar 

  • Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672–676.

    Article  CAS  PubMed  Google Scholar 

  • Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T et al. (2005). Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120: 237–248.

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Hendershot LM . (2004). ER chaperone functions during normal and stress conditions. J Chem Neuroanat 28: 51–65.

    Article  CAS  PubMed  Google Scholar 

  • Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R et al. (2004). CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18: 3066–3077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. (2005). An inhibitor of bcl-2 family proteins induces regression of solid tumours. Nature 435: 677–681.

    Article  CAS  PubMed  Google Scholar 

  • Oyadomari S, Mori M . (2004). Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11: 381–389.

    Article  CAS  PubMed  Google Scholar 

  • Puthalakath H, O'Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND et al. (2007). ER stress triggers apoptosis by activating BH3-only protein bim. Cell 129: 1337–1349.

    Article  CAS  PubMed  Google Scholar 

  • Raden D, Hildebrandt S, Xu P, Bell E, Doyle FJ, Robinson AS . (2005). Analysis of cellular response to protein overexpression. Syst Biol (Stevenage) 152: 285–289.

    Article  CAS  Google Scholar 

  • Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB . (2003). Akt-directed glucose metabolism can prevent bax conformation change and promote growth factor-independent survival. Mol Cell Biol 23: 7315–7328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reimertz C, Kogel D, Rami A, Chittenden T, Prehn JH . (2003). Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J Cell Biol 162: 587–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutkowski DT, Arnold SM, Miller CN, Wu J, Li J, Gunnison KM et al. (2006). Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol 4: e374.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saeki K, Yuo A, Okuma E, Yazaki Y, Susin SA, Kroemer G et al. (2000). Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ 7: 1263–1269.

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker AR, Oleksijew A, Bauch J, Belli BA, Borre T, Bruncko M et al. (2006). A small-molecule inhibitor of bcl-XL potentiates the activity of cytotoxic drugs in vitro and in vivo. Cancer Res 66: 8731–8739.

    Article  CAS  PubMed  Google Scholar 

  • Simons AL, Ahmad IM, Mattson DM, Dornfeld KJ, Spitz DR . (2007). 2-deoxy-D-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells. Cancer Res 67: 3364–3370.

    Article  CAS  PubMed  Google Scholar 

  • Smaili SS, Hsu YT, Carvalho AC, Rosenstock TR, Sharpe JC, Youle RJ . (2003). Mitochondria, calcium and pro-apoptotic proteins as mediators in cell death signaling. Braz J Med Biol Res 36: 183–190.

    Article  CAS  PubMed  Google Scholar 

  • Tower DB . (1958). The effects of 2-deoxy-D-glucose on metabolism of slices of cerebral cortex incubated in vitro. J Neurochem 3: 185–205.

    Article  CAS  PubMed  Google Scholar 

  • van de Wetering CI, Horne MC, Knudson CM . (2007). Chromosomal instability and supernumerary centrosomes represent precursor defects in a mouse model of T-cell lymphoma. Cancer Res 67: 8081–8088.

    Article  CAS  PubMed  Google Scholar 

  • van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE et al. (2006). The BH3 mimetic ABT-737 targets selective bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if mcl-1 is neutralized. Cancer Cell 10: 389–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB . (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XD, Deslandes E, Villedieu M, Poulain L, Duval M, Gauduchon P et al. (2006). Effect of 2-deoxy-D-glucose on various malignant cell lines in vitro. Anticancer Res 26: 3561–3566.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by RO1 no. CA104695, RO1 no. CA133114, R01 no. DK084058, and R01 no. GM086389. We thank Dr Chris van de Wetering for assistance in generating lymphoma cell lines, Dr Siegfried Janz and Dr SS Han for B-cell neoplasms, Dr Agshin Taghiyev and Dr Van Tompkins for their advice and assistance with TCL transduction experiments, Dr Craig Kuder and Dr Ray Hohl for antibodies and assistance with ER-stress markers, Heather Tyra for assistance with RT–PCR, Han Du for advice with the Bcl-2 IP experiments, Rebecca Glover and Jacob Wolf for their technical advice on western blotting and Dr Craig Thompson (The Sloan-Kettering Cancer Center) for Bax/Bak double-knockout cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C M Knudson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zagorodna, O., Martin, S., Rutkowski, D. et al. 2-Deoxyglucose-induced toxicity is regulated by Bcl-2 family members and is enhanced by antagonizing Bcl-2 in lymphoma cell lines. Oncogene 31, 2738–2749 (2012). https://doi.org/10.1038/onc.2011.454

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.454

Keywords

Search

Quick links