Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells

Abstract

Vesicular structures called microvesicles (MVs) that are shed from the surfaces of cancer cells are capable of transferring oncogenic cargo to recipient cancer cells, as well as to normal cells, sending mitogenic signals that greatly enhance tumor growth. Because MVs are stable in the circulation, they also may have a key role in secondary colonization and metastasis. Thus, understanding how MVs are generated could have important consequences for interfering with cancer progression. Here we report that the small GTPase RhoA triggers a specific signaling pathway essential for MV biogenesis in various human cancer cells. Inhibiting the activity of different proteins comprising this pathway blocks MV biogenesis in the donor cancer cells and prevents oncogenic transformation in cell culture as well as tumor growth in mice. Although RhoA has often been implicated in human cancer, these findings now highlight a previously unappreciated role for this GTPase in malignant transformation, and demonstrate that blocking MV biogenesis may offer novel approaches for interfering with malignant transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008; 10: 619–624.

    CAS  Google Scholar 

  2. Al-Nedawi K, Meehan B, Rak J . Microvesicles: messengers and mediators of tumor progression. Cell Cycle 2009; 8: 2014–2018.

    Article  CAS  Google Scholar 

  3. Antonyak MA, Li B, Boroughs LK, Johnson JL, Druso JE, Bryant KL et al. Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci USA 2011; 108: 4852–4857.

    Article  CAS  Google Scholar 

  4. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008; 10: 1470–1476.

    Article  CAS  Google Scholar 

  5. Lee TH, D'Asti E, Magnus N, Al-Nedawi K, Meehan B, Rak J . Microvesicles as mediators of intercellular communication in cancer-the emerging science of cellular ‘debris’. Semin Immunopathol 2011; 33: 455–467.

    Article  Google Scholar 

  6. Rak J . Microparticles in cancer. Semin. Thromb Hemost 2010; 36: 888–906.

    Article  CAS  Google Scholar 

  7. Keller S, Sanderson MP, Stoeck A, Altevogt P . Exosomes: from biogenesis and secretion to biological function. Immunol Lett 2006; 107: 102–108.

    Article  CAS  Google Scholar 

  8. Cocucci E, Racchetti G, Meldolesi J . Shedding microvesicles: artefacts no more. Trends Cell Biol 2009; 19: 43–51.

    Article  CAS  Google Scholar 

  9. Hao S, Ye Z, Li F, Meng Q, Qureshi M, Yang J et al. Epigenetic transfer of metastatic activity by uptake of highly metastatic B16 melanoma cell-released exosomes. Exp Oncol 2006; 28: 126–131.

    CAS  PubMed  Google Scholar 

  10. Catellana D, Zobairi F, Martinez, MC, Panaro MA, Mitolo V, Freyssinet JM et al. Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: a role for activated fibroblasts and CX3CL1-CX3CR1 axis. Cancer Res 2009; 69: 785–793.

    Article  Google Scholar 

  11. Jung T, Castellana D, Klingbeil P, Cuesta Hernandez I, Vitacolonna M, Orlicky DJ et al. CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia 2009; 11: 1093–1105.

    Article  CAS  Google Scholar 

  12. Narumiya S, Tanji M, Ishizaki T . Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev 2009; 28: 65–76.

    Article  CAS  Google Scholar 

  13. Li B, Antonyak MA, Druso JE, Cheng L, Nikitin AY, Cerione RA . EGF potentiated oncogenesis requires a tissue transglutaminase-dependent signaling pathway leading to Src activation. Proc Natl Acad Sci USA 2010; 107: 1408–1413.

    Article  CAS  Google Scholar 

  14. Yuan L, Siegel M, Choi K, Khosla C, Miller CR, Jackson EN et al. Transglutaminase 2 inhibitor, KCC009, disrupts fibronectin assembly in the extracellular matrix and sensitizes orthotopic glioblastomas to chemotherapy. Oncogene 2007; 26: 2563–2573.

    Article  CAS  Google Scholar 

  15. Teis D, Saksena S, Emr SD . SnapShot: the ESCRT machinery. Cell 2009; 137: 182.

    Article  CAS  Google Scholar 

  16. Heasman SJ, Ridley AJ . Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 2008; 9: 690–701.

    Article  CAS  Google Scholar 

  17. Roberts PJ, Der CJ . Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007; 26: 3291–3310.

    Article  CAS  Google Scholar 

  18. Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 2009; 19: 1875–1885.

    Article  CAS  Google Scholar 

  19. Narumiya S, Ishizaki T, Uehata M . Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol 2000; 325: 273–284.

    Article  CAS  Google Scholar 

  20. Loirand G, Guerin P, Pacaud P . Rho kinases in cardiovascular physiology and pathophysiology. Circ Res 2006; 98: 322–334.

    Article  CAS  Google Scholar 

  21. Kawano Y, Fukata Y, Oshiro N, Amano M, Nakamura T, Ito M et al. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol 1999; 147: 1023–1038.

    Article  CAS  Google Scholar 

  22. Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 1999; 285: 895–898.

    Article  CAS  Google Scholar 

  23. Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 1998; 393: 809–812.

    Article  CAS  Google Scholar 

  24. Petrache I, Birukov K, Zaiman AL, Crow MT, Deng H, Wadgaonkar R et al. Caspase-dependent cleavage of myosin light chain kinase (MLCK) is involved in TNF-alpha-mediated bovine pulmonary endothelial cell apoptosis. FASEB J 2003; 17: 407–416.

    Article  CAS  Google Scholar 

  25. Mbeunkui F, Johann Jr DJ . Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 2009; 63: 571–582.

    Article  Google Scholar 

  26. Davila M, Frost AR, Grizzle WE, Chakrabarti R . LIM kinase 1 is essential for the invasive growth of prostate epithelial cells: implications in prostate cancer. J Biol Chem 2003; 278: 36868–36875.

    Article  CAS  Google Scholar 

  27. Davila M, Jhala D, Ghosh D, Grizzle WE, Chakrabarti R . Expression of LIM kinase 1 is associated with reversible G1/S phase arrest, chromosomal instability and prostate cancer. Mol Cancer 2007; 6: 40.

    Article  Google Scholar 

  28. Yoshioka K, Foletta V, Bernard O, Itoh K . A role for LIM kinase in cancer invasion. Proc Natl Acad Sci USA 2003; 100: 7247–7252.

    Article  CAS  Google Scholar 

  29. Bagheri-Yarmand R, Mazumdar A, Satin AA, Kumar R . LIM kinase 1 increases tumor metastasis of human breast cancer cells via regulation of the urokinase-type plasminogen activator system. Int J Cancer 2006; 118: 2703–2710.

    Article  CAS  Google Scholar 

  30. Clark EA, Golub TR, Lander ES, Hynes RO . Genomic analysis of metastasis reveals an essential role for RhoC. Nature 2000; 406: 532–535.

    Article  CAS  Google Scholar 

  31. Vega FM, Ridley AJ . Rho GTPases in cancer cell biology. FEBS Lett 2008; 582: 2093–2101.

    Article  CAS  Google Scholar 

  32. Micuda S, Rösel D, Ryska A, Brábek J . ROCK inhibitors as emerging therapeutic candidates for sarcomas. Curr Cancer Drug Targets 2010; 10: 127–134.

    Article  CAS  Google Scholar 

  33. Fackler OT, Grosse R . Cell motility through plasma membrane blebbing. J Cell Biol 2008; 181: 879–884.

    Article  CAS  Google Scholar 

  34. Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ et al. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 2009; 69: 5601–5609.

    Article  CAS  Google Scholar 

  35. Charras GT, Hu CK, Coughlin M, Mitchison TJ . Reassembly of contractile actin cortex in cell blebs. J Cell Biol 2006; 175: 477–490.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Cindy Westmiller for her secretarial assistance and the NIH and the Komen Foundation for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Cerione.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Antonyak, M., Zhang, J. et al. RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene 31, 4740–4749 (2012). https://doi.org/10.1038/onc.2011.636

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.636

Keywords

This article is cited by

Search

Quick links