Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RSK regulates activated BRAF signalling to mTORC1 and promotes melanoma growth

Abstract

The Ras/mitogen-activated protein kinase (MAPK) signalling cascade regulates various biological functions, including cell growth, proliferation and survival. As such, this pathway is often deregulated in cancer, including melanomas, which frequently harbour activating mutations in the NRAS and BRAF oncogenes. Hyperactive MAPK signalling is known to promote protein synthesis, but the mechanisms by which this occurs remain poorly understood. Here, we show that expression of oncogenic forms of Ras and Raf promotes the constitutive activation of the mammalian target of rapamycin (mTOR). Using pharmacological inhibitors and RNA interference, we find that the MAPK-activated protein kinase RSK (p90 ribosomal S6 kinase) is partly required for these effects. Using melanoma cell lines carrying activating BRAF mutations, we show that ERK/RSK signalling regulates assembly of the translation initiation complex and polysome formation, as well as the translation of growth-related messenger RNAs containing a 5′-terminal oligopyrimidine (TOP) motif. Accordingly, we find that RSK inhibition abrogates tumour growth in mice. Our findings indicate that RSK may be a valuable therapeutic target for the treatment of tumours characterized by deregulated MAPK signalling, such as melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Murphy LO, Blenis J . MAPK signal specificity: the right place at the right time. Trends Biochem Sci 2006; 31: 268–275.

    Article  CAS  Google Scholar 

  2. Ballif BA, Blenis J . Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ 2001; 12: 397–408.

    CAS  Google Scholar 

  3. Schubbert S, Shannon K, Bollag G . Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 2007; 7: 295–308.

    Article  CAS  Google Scholar 

  4. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  CAS  Google Scholar 

  5. Fecher LA, Amaravadi RK, Flaherty KT . The MAPK pathway in melanoma. Curr Opin Oncol 2008; 20: 183–189.

    Article  CAS  Google Scholar 

  6. Gray-Schopfer VC, da Rocha Dias S, Marais R . The role of B-RAF in melanoma. Cancer Metastasis Rev 2005; 24: 165–183.

    Article  CAS  Google Scholar 

  7. Miller AJ, Mihm MC . Melanoma. N Engl J Med 2006; 355: 51–65.

    Article  CAS  Google Scholar 

  8. Scheier B, Amaria R, Lewis K, Gonzalez R . Novel therapies in melanoma. Immunotherapy 2011; 3: 1461–1469.

    Article  CAS  Google Scholar 

  9. Meloche S, Pouyssegur J . The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 2007; 26: 3227–3239.

    Article  CAS  Google Scholar 

  10. Servant MJ, Giasson E, Meloche S . Inhibition of growth factor-induced protein synthesis by a selective MEK inhibitor in aortic smooth muscle cells. J Biol Chem 1996; 271: 16047–16052.

    Article  CAS  Google Scholar 

  11. Rajalingam K, Schreck R, Rapp UR, Albert S . Ras oncogenes and their downstream targets. Biochim Biophys Acta 2007; 1773: 1177–1195.

    Article  CAS  Google Scholar 

  12. Waskiewicz AJ, Flynn A, Proud CG, Cooper JA . Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. Embo J 1997; 16: 1909–1920.

    Article  CAS  Google Scholar 

  13. Waskiewicz AJ, Johnson JC, Penn B, Mahalingam M, Kimball SR, Cooper JA . Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol 1999; 19: 1871–1880.

    Article  CAS  Google Scholar 

  14. Cargnello M, Roux PP . Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011; 75: 50–83.

    Article  CAS  Google Scholar 

  15. Buxade M, Parra-Palau JL, Proud CG . The Mnks: MAP kinase-interacting kinases (MAP kinase signal-integrating kinases). Front Biosci 2008; 13: 5359–5373.

    Article  CAS  Google Scholar 

  16. Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S, Fukunaga R . Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol 2004; 24: 6539–6549.

    Article  CAS  Google Scholar 

  17. Furic L, Rong L, Larsson O, Koumakpayi IH, Yoshida K, Brueschke A et al. eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci USA 2010; 107: 14134–14139.

    Article  CAS  Google Scholar 

  18. Gaestel M . Specificity of signaling from MAPKs to MAPKAPKs: kinases' tango nuevo. Front Biosci 2008; 13: 6050–6059.

    Article  CAS  Google Scholar 

  19. Romeo Y, Zhang X, Roux PP . Regulation and function of the RSK family of protein kinases. Biochem J 2012; 441: 553–569.

    Article  CAS  Google Scholar 

  20. Carriere A, Ray H, Blenis J, Roux PP . The RSK factors of activating the Ras/MAPK signaling cascade. Front Biosci 2008; 13: 4258–4275.

    Article  CAS  Google Scholar 

  21. Anjum R, Blenis J . The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol 2008; 9: 747–758.

    Article  CAS  Google Scholar 

  22. Romeo Y, Roux PP . Paving the way for targeting RSK in cancer. Expert Opin Ther Targets 2011; 15: 5–9.

    Article  CAS  Google Scholar 

  23. Old WM, Shabb JB, Houel S, Wang H, Couts KL, Yen CY et al. Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. Mol Cell 2009; 34: 115–131.

    Article  CAS  Google Scholar 

  24. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP . Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005; 121: 179–193.

    Article  CAS  Google Scholar 

  25. Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J . Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 2004; 101: 13489–13494.

    Article  CAS  Google Scholar 

  26. Sengupta S, Peterson TR, Sabatini DM . Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010; 40: 310–322.

    Article  CAS  Google Scholar 

  27. Caron E, Ghosh S, Matsuoka Y, Ashton-Beaucage D, Therrien M, Lemieux S et al. A comprehensive map of the mTOR signaling network. Mol Syst Biol 2011; 6: 453.

    Google Scholar 

  28. Wullschleger S, Loewith R, Hall MN . TOR signaling in growth and metabolism. Cell 2006; 124: 471–484.

    Article  CAS  Google Scholar 

  29. Jacinto E . What controls TOR? IUBMB Life 2008; 60: 483–496.

    Article  CAS  Google Scholar 

  30. Foster KG, Fingar DC . Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 2010; 285: 14071–14077.

    Article  CAS  Google Scholar 

  31. Ma XM, Blenis J . Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009; 10: 307–318.

    Article  Google Scholar 

  32. Sonenberg N, Hinnebusch AG . Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009; 136: 731–745.

    Article  CAS  Google Scholar 

  33. Ma XM, Yoon SO, Richardson CJ, Julich K, Blenis J . SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell 2008; 133: 303–313.

    Article  CAS  Google Scholar 

  34. Menon S, Manning BD . Common corruption of the mTOR signaling network in human tumors. Oncogene 2008; 27 (Suppl 2): S43–S51.

    Article  CAS  Google Scholar 

  35. Karbowniczek M, Spittle CS, Morrison T, Wu H, Henske EP . mTOR is activated in the majority of malignant melanomas. J Invest Dermatol 2008; 128: 980–987.

    Article  CAS  Google Scholar 

  36. Guertin DA, Sabatini DM . The pharmacology of mTOR inhibition. Sci Signal 2009; 2: pe24.

    Article  Google Scholar 

  37. Meyuhas O, Dreazen A . Chapter 3 Ribosomal protein S6 kinase from TOP mRNAs to cell size. Prog Mol Biol Transl Sci 2009; 90: 109–153.

    Article  CAS  Google Scholar 

  38. Yamashita R, Suzuki Y, Takeuchi N, Wakaguri H, Ueda T, Sugano S et al. Comprehensive detection of human terminal oligo-pyrimidine (TOP) genes and analysis of their characteristics. Nucleic Acids Res 2008; 36: 3707–3715.

    Article  CAS  Google Scholar 

  39. Bilanges B, Argonza-Barrett R, Kolesnichenko M, Skinner C, Nair M, Chen M et al. Tuberous sclerosis complex proteins 1 and 2 control serum-dependent translation in a TOP-dependent and -independent manner. Mol Cell Biol 2007; 27: 5746–5764.

    Article  CAS  Google Scholar 

  40. Eisenmann KM, VanBrocklin MW, Staffend NA, Kitchen SM, Koo HM . Mitogen-activated protein kinase pathway-dependent tumor-specific survival signaling in melanoma cells through inactivation of the proapoptotic protein bad. Cancer Res 2003; 63: 8330–8337.

    CAS  Google Scholar 

  41. Bilanges B, Stokoe D . Mechanisms of translational deregulation in human tumors and therapeutic intervention strategies. Oncogene 2007; 26: 5973–5990.

    Article  CAS  Google Scholar 

  42. Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N . mTOR translation initiation and cancer. Oncogene 2006; 25: 6416–6422.

    Article  CAS  Google Scholar 

  43. O'Reilly KE, Warycha M, Davies MA, Rodrik V, Zhou XK, Yee H et al. Phosphorylated 4E-BP1 is associated with poor survival in melanoma. Clin Cancer Res 2009; 15: 2872–2878.

    Article  CAS  Google Scholar 

  44. She QB, Halilovic E, Ye Q, Zhen W, Shirasawa S, Sasazuki T et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 2010; 18: 39–51.

    Article  CAS  Google Scholar 

  45. Dowling RJ, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 2010; 328: 1172–1176.

    Article  CAS  Google Scholar 

  46. Shahbazian D, Roux PP, Mieulet V, Cohen MS, Raught B, Taunton J et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. Embo J 2006; 25: 2781–2791.

    Article  CAS  Google Scholar 

  47. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J et al. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 2007; 282: 14056–14064.

    Article  CAS  Google Scholar 

  48. Zheng B, Jeong JH, Asara JM, Yuan YY, Granter SR, Chin L et al. Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell 2009; 33: 237–247.

    Article  CAS  Google Scholar 

  49. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 2008; 14: 1351–1356.

    Article  CAS  Google Scholar 

  50. Carriere A, Cargnello M, Julien LA, Gao H, Bonneil E, Thibault P et al. Oncogenic MAPK signalling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr Biol 2008; 18: 1269–1277.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Canadian Cancer Society Research Institute (PPR), the Cancer Research Society (PPR and SM), and the Natural Sciences and Engineering Research Council of Canada (PPR). We thank Dr Nahum Sonenberg for the phospho-4E-BP1 antibody. PP Roux holds a Canada Research Chair in Signal Transduction and Proteomics and a Career Development Award from the Human Frontier Science Programme (HFSP). K Borden and S Meloche hold Canada Research Chairs in Molecular Biology of the Cell Nucleus, and in Cellular Signalling, respectively. IRIC core facilities are supported by the FRSQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P P Roux.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romeo, Y., Moreau, J., Zindy, PJ. et al. RSK regulates activated BRAF signalling to mTORC1 and promotes melanoma growth. Oncogene 32, 2917–2926 (2013). https://doi.org/10.1038/onc.2012.312

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.312

Keywords

This article is cited by

Search

Quick links