Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes

Abstract

Activation of myofibroblast rich stroma is a rate-limiting step essential for cancer progression. The responsible factors are not fully understood, but TGFβ1 is probably critical. A proportion of TGFβ1 is associated with extracellular nano-vesicles termed exosomes, secreted by carcinoma cells, and the relative importance of soluble and vesicular TGFβ in stromal activation is presented. Prostate cancer exosomes triggered TGFβ1-dependent fibroblast differentiation, to a distinctive myofibroblast phenotype resembling stromal cells isolated from cancerous prostate tissue; supporting angiogenesis in vitro and accelerating tumour growth in vivo. Myofibroblasts generated using soluble TGFβ1 were not pro-angiogenic or tumour-promoting. Cleaving heparan sulphate side chains from the exosome surface had no impact on TGFβ levels yet attenuated SMAD-dependent signalling and myofibroblastic differentiation. Eliminating exosomes from the cancer cell secretome, targeting Rab27a, abolished differentiation and lead to failure in stroma-assisted tumour growth in vivo. Exosomal TGFβ1 is therefore required for the formation of tumour-promoting stroma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Yanagisawa N, Li R, Rowley D, Liu H, Kadmon D, Miles BJ et al. Stromogenic prostatic carcinoma pattern (carcinomas with reactive stromal grade 3) in needle biopsies predicts biochemical recurrence-free survival in patients after radical prostatectomy. Hum Pathol 2007; 38: 1611–1620.

    Article  CAS  Google Scholar 

  2. Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci 2010; 107: 20009–20014.

    Article  CAS  Google Scholar 

  3. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR . Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 1999; 59: 5002–5011.

    CAS  PubMed  Google Scholar 

  4. Tuxhorn JA, McAlhany SJ, Yang F, Dang TD, Rowley DR . Inhibition of transforming growth factor-β activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res 2002; 62: 6021–6025.

    CAS  PubMed  Google Scholar 

  5. Tuxhorn JA, Ayala GE, Smith MJ, Smith VC, Dang TD, Rowley DR . Reactive stroma in human prostate cancer. Clin Cancer Res 2002; 8: 2912–2923.

    CAS  PubMed  Google Scholar 

  6. Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 2009; 15: 68–74.

    Article  CAS  Google Scholar 

  7. Moorman AM, Vink R, Heijmans HJ, van der Palen J, Kouwenhoven EA . The prognostic value of tumour-stroma ratio in triple-negative breast cancer. Eur J Surg Oncol 2012; 38: 307–313.

    Article  CAS  Google Scholar 

  8. Mesker WE, Liefers G-J, Junggeburt JMC, van Pelt GW, Alberici P, Kuppen PJK et al. Presence of a high amount of stroma and downregulation of SMAD4 predict for worse survival for stage I–II colon cancer patients. Cell Oncol 2009; 31: 169–178.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Verona EV, Elkahloun AG, Yang J, Bandyopadhyay A, Yeh I-T, Sun L-Z . Transforming growth factor-β signaling in prostate stromal cells supports prostate carcinoma growth by up-regulating stromal genes related to tissue remodeling. Cancer Res 2007; 67: 5737–5746.

    Article  CAS  Google Scholar 

  10. Renzoni E, Abraham D, Howat S, Shi-Wen X, Sestini P, Bou-Gharios G et al. Gene expression profiling reveals novel TGFbeta targets in adult lung fibroblasts. Respir Res 2004; 5: 24.

    Article  Google Scholar 

  11. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A, Varga J et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Path 2012; 180: 1340–1355.

    Article  CAS  Google Scholar 

  12. Webber J, Steadman R, Tabi Z, Mason MD, Clayton A . Cancer exosomes activate fibroblast to myofibroblast differentiation in a TGFβ dependent manner. Cancer Res 2010; 70: 9621–9630.

    Article  CAS  Google Scholar 

  13. Gu J, Qian H, Shen L, Zhang X, Zhu W, Huang L et al. Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-β/Smad pathway. PLoS One 2012; 7: e52465.

    Article  CAS  Google Scholar 

  14. Raposo G, Nijman HW, Stoorvogel W, Leijendekker R, Harding CV, Melief CJM et al. B Lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996; 183: 1161–1172.

    Article  CAS  Google Scholar 

  15. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008; 319: 1244–1247.

    Article  CAS  Google Scholar 

  16. Simpson RJ, Lim JW, Moritz RL, Mathivanan S . Exosomes: proteomic insights and diagnostic potential. Exp Rev Proteomics 2009; 6: 267–283.

    Article  CAS  Google Scholar 

  17. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO . Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 654–659.

    Article  CAS  Google Scholar 

  18. Thery C, Ostrowski M, Segura E . Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9: 581–593.

    Article  CAS  Google Scholar 

  19. Junji W, Hideya O, Hiroyuki S, Akio Y, Shuntaro N, Takashi M et al. Surface-bound TGF-β on effusion-derived exosomes participates in maintenance of number and suppressive function of regulatory T-Cells in malignant effusions. Anticancer Res 2010; 30: 3747–3757.

    Google Scholar 

  20. Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z . Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol 2008; 180: 7249–7258.

    Article  CAS  Google Scholar 

  21. Clayton A, Mitchell JP, Court J, Mason MD, Tabi Z . Human tumour-derived exosomes selectively impair lymphocyte responses to Interleukin-2. Cancer Res 2007; 67: 7458–7466.

    Article  CAS  Google Scholar 

  22. Hood JL, San RS, Wickline SA . Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 2011; 71: 3792–3801.

    Article  CAS  Google Scholar 

  23. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012; 18: 883–891.

    Article  CAS  Google Scholar 

  24. Sheldon H, Heikamp E, Turley H, Dragovic R, Thomas P, Oon CE et al. New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood 2010; 116: 2385–2394.

    Article  CAS  Google Scholar 

  25. Gesierich S, Berezovskiy I, Ryschich E, Zoller M . Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res 2006; 66: 7083–7094.

    Article  CAS  Google Scholar 

  26. Hood JL, Pan H, Lanza GM, Wickline SA . Paracrine induction of endothelium by tumor exosomes. Lab Invest 2009; 89: 1317–1328.

    Article  Google Scholar 

  27. Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 2010; 70: 1668–1678.

    Article  CAS  Google Scholar 

  28. Richman PI, Tilly R, Jass JR, Bodmer WF . Colonic pericrypt sheath cells: characterisation of cell type with new monoclonal antibody. J Clin Pathol 1987; 40: 593–600.

    Article  CAS  Google Scholar 

  29. Hetheridge C, Mavria G, Mellor H . Uses of the in vitro endothelial-fibroblast organotypic co-culture assay in angiogenesis research. Biochem Soc Trans 2011; 39: 1597–1600.

    Article  CAS  Google Scholar 

  30. Lories V, Cassiman JJ, Van den Berghe H, David G . Multiple distinct membrane heparan sulfate proteoglycans in human lung fibroblasts. J Biol Chem 1989; 264: 7009–7016.

    CAS  PubMed  Google Scholar 

  31. Hashizume H, Falcon BL, Kuroda T, Baluk P, Coxon A, Yu D et al. Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth. Cancer Res 2010; 70: 2213–2223.

    Article  CAS  Google Scholar 

  32. Jones JL, Anderson JM, Phuah CL, Fox EJ, Selmaj K, Margolin D et al. Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity. Brain 2010; 133 (Pt 8): 2232–2247.

    Article  Google Scholar 

  33. Stefansson S, McMahon GA, Petitclerc E, Lawrence DA . Plasminogen activator inhibitor-1 in tumor growth, angiogenesis and vascular remodeling. Curr Pharm Des 2003; 9: 1545–1564.

    Article  CAS  Google Scholar 

  34. Ma PC, Jagadeeswaran R, Jagadeesh S, Tretiakova MS, Nallasura V, Fox EA et al. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res 2005; 65: 1479–1488.

    Article  CAS  Google Scholar 

  35. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 2010; 12: 19–30.

    Article  CAS  Google Scholar 

  36. Massague J . Receptors for the TGF-beta family. Cell 1992; 69: 1067–1070.

    Article  CAS  Google Scholar 

  37. Mitchell JP, Court J, Mason MD, Tabi Z, Clayton A . Increased exosome production from tumour cell cultures using the Integra CELLine Culture System. J Immunol Methods 2008; 335: 98–105.

    Article  CAS  Google Scholar 

  38. Lamparski H, Metha-Damani A, Yao J, Patel S, Hsu D, Ruegg C et al. Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 2002; 270: 211–226.

    Article  CAS  Google Scholar 

  39. Welton JL, Khanna S, Giles PJ, Brennan P, Brewis IA, Staffurth J et al. Proteomic analysis of bladder cancer exosomes. Mol Cell Proteomics 2010; 6: 1324–1338.

    Article  Google Scholar 

  40. Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z . Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol 2011; 187: 676–683.

    Article  CAS  Google Scholar 

  41. Zuker M . Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003; 31: 3406–3415.

    Article  CAS  Google Scholar 

  42. Jiang WG, Davies G, Martin TA, Kynaston H, Mason MD, Fodstad O . Com-1/p8 acts as a putative tumour suppressor in prostate cancer. Int J Mol Med 2006; 18: 981–986.

    CAS  PubMed  Google Scholar 

  43. Webber J, Meran S, Steadman R, Phillips A . Hyaluronan orchestrates transforming growth factor-beta1-dependent maintenance of myofibroblast phenotype. J Biol Chem 2009; 284: 9083–9092.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Cancer Research Wales programme grant awarded to AC, ZT, WGJ and MDM. Confocal microscopy studies were supported by a CR-UK studentship awarded to JPW and ATJ. In vivo studies were supported by a CR-UK development grant to AC and JPW. Drs Jane Lane and Tracey Martin are acknowledged for their help with the in vivo work. Dr H Sheldon and Professor A Harris, Oxford University, UK assisted with establishing in vitro angiogenesis assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Clayton.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webber, J., Spary, L., Sanders, A. et al. Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene 34, 290–302 (2015). https://doi.org/10.1038/onc.2013.560

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.560

Keywords

This article is cited by

Search

Quick links