Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Oncogenic suppression of apoptosis uncovers a Rac1/JNK proliferation pathway activated by loss of Par3

Abstract

Disruption of epithelial organization and loss of growth control are universal features of carcinomas, yet how these features are linked during cancer progression remains poorly understood. Cell polarity proteins control cellular and tissue organization and are emerging as important mediators of cancer progression. The Par3 polarity protein is a molecular scaffold that functions to recruit and spatially organize signaling factors, and was recently identified as a suppressor of breast cancer invasion and metastasis. Here, we show that loss of Par3 in mammary epithelial cells promotes apoptosis, and that oncogenic Notch overcomes the apoptotic signal to reveal an unexpected pro-proliferative role for loss of Par3 in mammary tumors. In this context, loss of Par3 deregulates Rac1 activity to activate Jun N-terminal Kinase-dependent proliferation and tumor growth. Thus, we demonstrate a mechanism by which loss of Par3 promotes proliferation and tumorigenesis, which supports a tumor-suppressive function for Par3 in the mammary epithelium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. McCaffrey LM, Macara IG Epithelial organization, cell polarity and tumorigenesis. Trends Cell Biol 2011; 21: 727–735.

    Article  CAS  Google Scholar 

  2. Tepass U The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol 2012; 28: 655–685.

    Article  CAS  Google Scholar 

  3. Zhao B, Tumaneng K, Guan KL The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 2011; 13: 877–883.

    Article  CAS  Google Scholar 

  4. Huang L, Muthuswamy SK Polarity protein alterations in carcinoma: a focus on emerging roles for polarity regulators. Curr Opin Genet Dev 2010; 20: 41–50.

    Article  CAS  Google Scholar 

  5. Hayase J, Kamakura S, Iwakiri Y, Yamaguchi Y, Izaki T, Ito T et al. The WD40 protein Morg1 facilitates Par6-aPKC binding to Crb3 for apical identity in epithelial cells. J Cell Biol 2013; 200: 635–650.

    Article  CAS  Google Scholar 

  6. Morais-de-Sa E, Mirouse V St, Johnston D aPKC phosphorylation of Bazooka defines the apical/lateral border in Drosophila epithelial cells. Cell 2010; 141: 509–523.

    Article  CAS  Google Scholar 

  7. Nolan ME, Aranda V, Lee S, Lakshmi B, Basu S, Allred DC et al. The polarity protein Par6 induces cell proliferation and is overexpressed in breast cancer. Cancer Res 2008; 68: 8201–8209.

    Article  CAS  Google Scholar 

  8. Kim M, Datta A, Brakeman P, Yu W, Mostov KE . Polarity proteins PAR6 and aPKC regulate cell death through GSK-3beta in 3D epithelial morphogenesis. J Cell Sci 2007; 120: 2309–2317.

    Article  CAS  Google Scholar 

  9. Stallings-Mann M, Jamieson L, Regala RP, Weems C, Murray NR, Fields AP A novel small-molecule inhibitor of protein kinase Ciota blocks transformed growth of non-small-cell lung cancer cells. Cancer Res 2006; 66: 1767–1774.

    Article  CAS  Google Scholar 

  10. Durgan J, Kaji N, Jin D, Hall A Par6B and atypical PKC regulate mitotic spindle orientation during epithelial morphogenesis. J Biol Chem 2011; 286: 12461–12474.

    Article  CAS  Google Scholar 

  11. Iden S, van Riel Wilhelmina E, Schäfer R, Song J-Y, Hirose T, Ohno S et al. Tumor type-dependent function of the Par3 polarity protein in skin tumorigenesis. Cancer Cell 2012; 22: 389–403.

    Article  CAS  Google Scholar 

  12. McCaffrey LM, Macara IG The Par3/aPKC interaction is essential for end bud remodeling and progenitor differentiation during mammary gland morphogenesis. Genes Dev 2009; 23: 1450–1460.

    Article  CAS  Google Scholar 

  13. Xue B, Krishnamurthy K, Allred DC, Muthuswamy SK Loss of Par3 promotes breast cancer metastasis by compromising cell-cell cohesion. Nat Cell Biol 2013; 15: 189–200.

    Article  CAS  Google Scholar 

  14. Chen X, Macara IG Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat Cell Biol 2005; 7: 262–269.

    Article  CAS  Google Scholar 

  15. Georgiou M, Baum B Polarity proteins and Rho GTPases cooperate to spatially organise epithelial actin-based protrusions. J Cell Sci 2010; 123: 1089–1098.

    Article  CAS  Google Scholar 

  16. Nishimura T, Yamaguchi T, Kato K, Yoshizawa M, Nabeshima Y, Ohno S et al. PAR-6-PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nat Cell Biol 2005; 7: 270–277.

    Article  CAS  Google Scholar 

  17. Pegtel DM, Ellenbroek SI, Mertens AE, van der Kammen RA, de Rooij J, Collard JG . The Par-Tiam1 complex controls persistent migration by stabilizing microtubule-dependent front-rear polarity. Curr Biol 2007; 17: 1623–1634.

    Article  CAS  Google Scholar 

  18. Zhang H, Macara IG The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis. Nat Cell Biol 2006; 8: 227–237.

    Article  CAS  Google Scholar 

  19. Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H et al. Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 2000; 19: 3013–3020.

    Article  CAS  Google Scholar 

  20. Zhou C, Licciulli S, Avila JL, Cho M, Troutman S, Jiang P et al. The Rac1 splice form Rac1b promotes K-ras-induced lung tumorigenesis. Oncogene 2013; 32: 903–909.

    Article  CAS  Google Scholar 

  21. Kawazu M, Ueno T, Kontani K, Ogita Y, Ando M, Fukumura K et al. Transforming mutations of RAC guanosine triphosphatases in human cancers. Proc Natl Acad Sci USA 2013; 110: 3029–3034.

    Article  CAS  Google Scholar 

  22. Wertheimer E, Gutierrez-Uzquiza A, Rosemblit C, Lopez-Haber C, Sosa MS, Kazanietz MG Rac signaling in breast cancer: a tale of GEFs and GAPs. Cell Signal 2012; 24: 353–362.

    Article  CAS  Google Scholar 

  23. Strumane K, Rygiel T, van der Valk M, Collard JG . Tiam1-deficiency impairs mammary tumor formation in MMTV-c-neu but not in MMTV-c-myc mice. J Cancer Res Clin Oncol 2009; 135: 69–80.

    Article  CAS  Google Scholar 

  24. McCaffrey Luke M, Montalbano J, Mihai C, Macara Ian G Loss of the Par3 polarity protein promotes breast tumorigenesis and metastasis. Cancer Cell 2012; 22: 601–614.

    Article  Google Scholar 

  25. Hu C, Dievart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol 2006; 168: 973–990.

    Article  CAS  Google Scholar 

  26. Al-Hussaini H, Subramanyam D, Reedijk M, Sridhar SS Notch signaling pathway as a therapeutic target in breast cancer. Mol Cancer Ther 2011; 10: 9–15.

    Article  CAS  Google Scholar 

  27. Simmons MJ, Serra R, Hermance N, Kelliher MA NOTCH1 inhibition in vivo results in mammary tumor regression and reduced mammary tumorsphere-forming activity in vitro. Breast Cancer Res 2012; 14: R126.

    Article  CAS  Google Scholar 

  28. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 2007; 8: R76.

    Article  Google Scholar 

  29. Bosco EE, Mulloy JC, Zheng Y Rac1 GTPase: a "Rac" of all trades. Cell Mol Life Sci 2009; 66: 370–374.

    Article  CAS  Google Scholar 

  30. Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 2004; 101: 7618–7623.

    Article  CAS  Google Scholar 

  31. Olson MF, Ashworth A, Hall A An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 1995; 269: 1270–1272.

    Article  CAS  Google Scholar 

  32. Warner SJ, Yashiro H, Longmore GD The Cdc42/Par6/aPKC polarity complex regulates apoptosis-induced compensatory proliferation in epithelia. Curr Biol 2010; 20: 677–686.

    Article  CAS  Google Scholar 

  33. Cellurale C, Girnius N, Jiang F, Cavanagh-Kyros J, Lu S, Garlick DS et al. Role of JNK in mammary gland development and breast cancer. Cancer Res 2012; 72: 472–481.

    Article  CAS  Google Scholar 

  34. Brumby AM, Richardson HE scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. Embo J 2003; 22: 5769–5779.

    Article  CAS  Google Scholar 

  35. Uhlirova M, Jasper H, Bohmann D Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model. Proc Natl Acad Sci USA 2005; 102: 13123–13128.

    Article  CAS  Google Scholar 

  36. Fereshteh MP, Tilli MT, Kim SE, Xu J, O'Malley BW, Wellstein A et al. The nuclear receptor coactivator amplified in breast cancer-1 is required for Neu (ErbB2/HER2) activation, signaling, and mammary tumorigenesis in mice. Cancer Res 2008; 68: 3697–3706.

    Article  CAS  Google Scholar 

  37. Han JS, Crowe DL Jun amino-terminal kinase 1 activation promotes cell survival in ErbB2-positive breast cancer. Anticancer Res 2010; 30: 3407–3412.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Didier Trono (Lausanne, Switzerland) for lentivectors. K8 hybridoma, developed by Philippe Brulet and Rolf Kemler, was obtained from the Universtiy of Iowa Developmental Hybridoma Bank. This work was supported by grants from TFRI (Project #1009) and CIHR (MOP-119482) to LM. LM is a FRQS Research Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L McCaffrey.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Archibald, A., Mihai, C., Macara, I. et al. Oncogenic suppression of apoptosis uncovers a Rac1/JNK proliferation pathway activated by loss of Par3. Oncogene 34, 3199–3206 (2015). https://doi.org/10.1038/onc.2014.242

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.242

This article is cited by

Search

Quick links