Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Arl4c expression in colorectal and lung cancers promotes tumorigenesis and may represent a novel therapeutic target

Subjects

Abstract

We recently demonstrated that expression of ADP-ribosylation factor (ARF)-like 4c (Arl4c) induced by a combination of Wnt/β-catenin and epidermal growth factor/Ras signaling in normal epithelial cells grown in three-dimensional culture promotes cellular migration and proliferation, resulting in formation of tube-like structures, suggesting the involvement of Arl4c in epithelial morphogenesis. It is conceivable that there could be a common mechanism between epithelial morphogenesis and carcinogenesis. Therefore the current study was conducted to investigate whether Arl4c might be involved in tumorigenesis. Immunohistochemical analyses of tissue specimens obtained from colorectal and lung cancer patients revealed that Arl4c was not observed in non-tumor regions but was strongly expressed at high frequencies in tumor lesions. Inhibition of Wnt/β-catenin or Ras/mitogen-activated protein kinase signaling reduced Arl4c mRNA levels in HCT116 colorectal cancer cells and A549 lung cancer cells. Knockdown of Arl4c inhibited Rac activity and also prevented nuclear localization of yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) in these cancer cells. Arl4c-depleted cancer cells consistently showed decreased migration, invasion and proliferation capabilities both in vitro and in vivo. Furthermore, direct injection of Arl4c small interfering RNA (siRNA) into HCT116 cell-derived tumors (in vivo treatment with siRNA) inhibited tumor growth in immunodeficient mice. These results suggest that Arl4c is involved in tumorigenesis and might represent a novel therapeutic target for suppressing proliferation and invasion of colorectal and lung cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. O'Brien LE, Zegers MM, Mostov KE . Opinion: Building epithelial architecture: insights from three-dimensional culture models. Nat Rev Mol Cell Biol 2002; 3: 531–537.

    Article  CAS  Google Scholar 

  2. Debnath J, Brugge JS . Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 2005; 5: 675–688.

    Article  CAS  Google Scholar 

  3. Matsumoto S, Fujii S, Sato A, Ibuka S, Kagawa Y, Ishii M et al. A combination of Wnt and growth factor signaling induces Arl4c expression to form epithelial tubular structures. EMBO J 2014; 33: 702–718.

    Article  CAS  Google Scholar 

  4. Burd CG, Strochlic TI, Gangi Setty SR . Arf-like GTPases: not so Arf-like after all. Trends Cell Biol 2004; 14: 687–694.

    Article  CAS  Google Scholar 

  5. Pasqualato S, Renault L, Cherfils J . Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for 'front-back' communication. EMBO Rep 2002; 3: 1035–1041.

    Article  CAS  Google Scholar 

  6. Jacobs S, Schilf C, Fliegert F, Koling S, Weber Y, Schurmann A et al. ADP-ribosylation factor (ARF)-like 4, 6, and 7 represent a subgroup of the ARF family characterization by rapid nucleotide exchange and a nuclear localization signal. FEBS Lett 1999; 456: 384–388.

    Article  CAS  Google Scholar 

  7. Engel T, Lueken A, Bode G, Hobohm U, Lorkowski S, Schlueter B et al. ADP-ribosylation factor (ARF)-like 7 (ARL7) is induced by cholesterol loading and participates in apolipoprotein AI-dependent cholesterol export. FEBS Lett 2004; 566: 241–246.

    Article  CAS  Google Scholar 

  8. Wei SM, Xie CG, Abe Y, Cai JT . ADP-ribosylation factor like 7 (ARL7) interacts with α-tubulin and modulates intracellular vesicular transport. Biochem Biophys Res Commun 2009; 384: 352–356.

    Article  CAS  Google Scholar 

  9. McCormick F . Signalling networks that cause cancer. Trends Cell Biol 1999; 9: M53–M56.

    Article  CAS  Google Scholar 

  10. Polakis P . The many ways of Wnt in cancer. Curr Opin Genet Dev 2007; 17: 45–51.

    Article  CAS  Google Scholar 

  11. Clevers H, Nusse R . Wnt/β-catenin signaling and disease. Cell 2012; 149: 1192–1205.

    Article  CAS  Google Scholar 

  12. Kikuchi A, Yamamoto H, Sato A, Matsumoto S . New insights into the mechanism of wnt signaling pathway activation. Int Rev Cell Mol Biol 2011; 291: 21–71.

    Article  CAS  Google Scholar 

  13. Sekido Y, Fong KM, Minna JD . Molecular genetics of lung cancer. Annu Rev Med 2003; 54: 73–87.

    Article  CAS  Google Scholar 

  14. Mori M, Rao SK, Popper HH, Cagle PT, Fraire AE . Atypical adenomatous hyperplasia of the lung: a probable forerunner in the development of adenocarcinoma of the lung. Mod Pathol 2001; 14: 72–84.

    Article  CAS  Google Scholar 

  15. Gayet J, Zhou XP, Duval A, Rolland S, Hoang JM, Cottu P et al. Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines. Oncogene 2001; 20: 5025–5032.

    Article  CAS  Google Scholar 

  16. Yang J, Zhang W, Evans PM, Chen X, He X, Liu C . Adenomatous polyposis coli (APC) differentially regulates β-catenin phosphorylation and ubiquitination in colon cancer cells. J Biol Chem 2006; 281: 17751–17757.

    Article  CAS  Google Scholar 

  17. She QB, Halilovic E, Ye Q, Zhen W, Shirasawa S, Sasazuki T et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 2010; 18: 39–51.

    Article  CAS  Google Scholar 

  18. Krypuy M, Newnham GM, Thomas DM, Conron M, Dobrovic A . High resolution melting analysis for the rapid and sensitive detection of mutations in clinical samples: KRAS codon 12 and 13 mutations in non-small cell lung cancer. BMC Cancer 2006; 6: 295.

    Article  Google Scholar 

  19. Sunaga N, Shames DS, Girard L, Peyton M, Larsen JE, Imai H et al. Knockdown of oncogenic KRAS in non-small cell lung cancers suppresses tumor growth and sensitizes tumor cells to targeted therapy. Mol Cancer Ther 2011; 10: 336–346.

    Article  CAS  Google Scholar 

  20. Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol 2009; 5: 100–107.

    Article  CAS  Google Scholar 

  21. Hashimoto S, Onodera Y, Hashimoto A, Tanaka M, Hamaguchi M, Yamada A et al. Requirement for Arf6 in breast cancer invasive activities. Proc Natl Acad Sci USA 2004; 101: 6647–6652.

    Article  CAS  Google Scholar 

  22. Salhia B, Rutten F, Nakada M, Beaudry C, Berens M, Kwan A et al. Inhibition of Rho-kinase affects astrocytoma morphology, motility, and invasion through activation of Rac1. Cancer Res 2005; 65: 8792–8800.

    Article  CAS  Google Scholar 

  23. Kagawa Y, Matsumoto S, Kamioka Y, Mimori K, Naito Y, Ishii T et al. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo. PLoS ONE 2013; 8: e83629.

    Article  Google Scholar 

  24. Shitashige M, Satow R, Jigami T, Aoki K, Honda K, Shibata T et al. Traf2- and Nck-interacting kinase is essential for Wnt signaling and colorectal cancer growth. Cancer Res 2010; 70: 5024–5033.

    Article  CAS  Google Scholar 

  25. Polakis P, McCormick F . Structural requirements for the interaction of p21ras with GAP, exchange factors, and its biological effector target. J Biol Chem 1993; 268: 9157–9160.

    CAS  PubMed  Google Scholar 

  26. Hofmann I, Thompson A, Sanderson CM, Munro S . The Arl4 family of small G proteins can recruit the cytohesin Arf6 exchange factors to the plasma membrane. Curr Biol 2007; 17: 711–716.

    Article  CAS  Google Scholar 

  27. Li CC, Chiang TC, Wu TS, Pacheco-Rodriguez G, Moss J, Lee FJ . ARL4D recruits cytohesin-2/ARNO to modulate actin remodeling. Mol Biol Cell 2007; 18: 4420–4437.

    Article  CAS  Google Scholar 

  28. Barry ER, Morikawa T, Butler BL, Shrestha K, de la Rosa R, Yan KS et al. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 2012; 493: 106–110.

    Article  CAS  Google Scholar 

  29. Jiao S, Wang H, Shi Z, Dong A, Zhang W, Song X et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 2014; 25: 166–180.

    Article  CAS  Google Scholar 

  30. Feinberg AP . Phenotypic plasticity and the epigenetics of human disease. Nature 2007; 447: 433–440.

    Article  CAS  Google Scholar 

  31. Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 2010; 467: 338–342.

    Article  CAS  Google Scholar 

  32. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010; 362: 2380–2388.

    Article  CAS  Google Scholar 

  33. Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M et al. A small molecule inhibitor of β-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci USA 2004; 101: 12682–12687.

    Article  CAS  Google Scholar 

  34. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 2009; 461: 614–620.

    Article  CAS  Google Scholar 

  35. Nieto MA . Epithelial plasticity: a common theme in embryonic and cancer cells. Science 2013; 342: 1234850.

    Article  Google Scholar 

  36. Dorsett Y, Tuschl T . siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 2004; 3: 318–329.

    Article  CAS  Google Scholar 

  37. Ikeda J, Oda T, Inoue M, Uekita T, Sakai R, Okumura M et al. Expression of CUB domain containing protein (CDCP1) is correlated with prognosis and survival of patients with adenocarcinoma of lung. Cancer Sci 2009; 100: 429–433.

    Article  CAS  Google Scholar 

  38. Wang L, Shi S, Guo Z, Zhang X, Han S, Yang A et al. Overexpression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells. PLoS ONE 2013; 8: e65539.

    Article  CAS  Google Scholar 

  39. Tsai HC, Li H, Van Neste L, Cai Y, Robert C, Rassool FV et al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 2012; 21: 430–446.

    Article  CAS  Google Scholar 

  40. Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 2012; 22: 66–79.

    Article  CAS  Google Scholar 

  41. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM . Development of a self-inactivating lentivirus vector. J Virol 1998; 72: 8150–8157.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sato A, Yamamoto H, Sakane H, Koyama H, Kikuchi A . Wnt5a regulates distinct signalling pathways by binding to Frizzled2. EMBO J 2010; 29: 41–54.

    Article  CAS  Google Scholar 

  43. Gon H, Fumoto K, Ku Y, Matsumoto S, Kikuchi A . Wnt5a signaling promotes apical and basolateral polarization of single epithelial cells. Mol Biol Cell 2013; 24: 3764–3774.

    Article  CAS  Google Scholar 

  44. Kurayoshi M, Oue N, Yamamoto H, Kishida M, Inoue A, Asahara T et al. Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res 2006; 66: 10439–10448.

    Article  CAS  Google Scholar 

  45. Yamamoto H, Kitadai Y, Yamamoto H, Oue N, Ohdan H, Yasui W et al. Laminin γ2 mediates Wnt5a-induced invasion of gastric cancer cells. Gastroenterology 2009; 137: 242–252.

    Article  CAS  Google Scholar 

  46. Matsumoto S, Fumoto K, Okamoto T, Kaibuchi K, Kikuchi A . Binding of APC and dishevelled mediates Wnt5a-regulated focal adhesion dynamics in migrating cells. EMBO J 2010; 29: 1192–1204.

    Article  CAS  Google Scholar 

  47. Hanaki H, Yamamoto H, Sakane H, Matsumoto S, Ohdan H, Sato A et al. An anti-Wnt5a antibody suppresses metastasis of gastric cancer cells in vivo by inhibiting receptor-mediated endocytosis. Mol Cancer Ther 2012; 11: 298–307.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Y Shintani and Dr K Shojima for valuable discussions regarding Arl4c expression and their technical assistance. We also thank Dr T Kobayashi, Dr W Yasui and Dr K Matsumoto for donating cells. This work was supported by Grants-in-Aid for Scientific Research to AK (2013–2014) (No. 25250018), SF (2014) (No. 26861547) and SM (2013–2014) (No. 25860211) and for Scientific Research on Innovative Areas to AK (2011–2014) (No. 23112004) from the Ministry of Education, Science and Culture of Japan and by grants from the Uehara Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Kikuchi.

Ethics declarations

Competing interests

SF, SM and AK have received research funds from Shionogi and Co., Ltd. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, S., Matsumoto, S., Nojima, S. et al. Arl4c expression in colorectal and lung cancers promotes tumorigenesis and may represent a novel therapeutic target. Oncogene 34, 4834–4844 (2015). https://doi.org/10.1038/onc.2014.402

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.402

This article is cited by

Search

Quick links