Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Osteopontin mediates an MZF1–TGF-β1-dependent transformation of mesenchymal stem cells into cancer-associated fibroblasts in breast cancer

Subjects

Abstract

Interactions between tumor cells and cancer-associated fibroblasts (CAFs) in the tumor microenvironment significantly influence cancer growth and metastasis. Transforming growth factor-β (TGF-β) is known to be a critical mediator of the CAF phenotype, and osteopontin (OPN) expression in tumors is associated with more aggressive phenotypes and poor patient outcomes. The potential link between these two pathways has not been previously addressed. Utilizing in vitro studies using human mesenchymal stem cells (MSCs) and MDA-MB231 (OPN+) and MCF7 (OPN−) human breast cancer cell lines, we demonstrate that OPN induces integrin-dependent MSC expression of TGF-β1 to mediate adoption of the CAF phenotype. This OPN–TGF-β1 pathway requires the transcription factor, myeloid zinc finger 1 (MZF1). In vivo studies with xenotransplant models in NOD-scid mice showed that OPN expression increases cancer growth and metastasis by mediating MSC-to-CAF transformation in a process that is MZF1 and TGF-β1 dependent. We conclude that tumor-derived OPN engenders MSC-to-CAF transformation in the microenvironment to promote tumor growth and metastasis via the OPN–MZF1–TGF-β1 pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 2008; 68: 4331–4339.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE 2009; 4: e4992.

    PubMed  PubMed Central  Google Scholar 

  3. Bierie B, Moses HL . Tumour microenvironment: TGF[beta]: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 2006; 6: 506–520.

    Article  CAS  PubMed  Google Scholar 

  4. Worthington JJ, Klementowicz JE, Travis MA . TGFbeta: a sleeping giant awoken by integrins. Trends Biochem Sci 2011; 36: 47–54.

    CAS  PubMed  Google Scholar 

  5. Liu Z, Bandyopadhyay A, Nichols RW, Wang L, Hinck AP, Wang S et al. Blockade of autocrine TGF-beta signaling inhibits stem cell phenotype, survival, and metastasis of murine breast cancer cells. J Stem Cell Res Ther 2012; 2: 1–8.

    PubMed  PubMed Central  Google Scholar 

  6. Dumont N, Liu B, Defilippis RA, Chang H, Rabban JT, Karnezis AN et al. Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia 2013; 15: 249–262.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 2003; 9: 416–423.

    CAS  PubMed  Google Scholar 

  8. Wai PY, Kuo PC . Osteopontin: regulation in tumor metastasis. Cancer Metastasis Rev 2008; 27: 103–118.

    CAS  PubMed  Google Scholar 

  9. Bramwell VH, Doig GS, Tuck AB, Wilson SM, Tonkin KS, Tomiak A et al. Serial plasma osteopontin levels have prognostic value in metastatic breast cancer. Clin Cancer Res 2006; 12: 3337–3343.

    CAS  PubMed  Google Scholar 

  10. Mi Z, Guo H, Wai PY, Gao C, Wei J, Kuo PC . Differential osteopontin expression in phenotypically distinct subclones of murine breast cancer cells mediates metastatic behavior. J Biol Chem 2004; 279: 46659–46667.

    CAS  PubMed  Google Scholar 

  11. Singhal H, Bautista DS, Tonkin KS, O'Malley FP, Tuck AB, Chambers AF et al. Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clin Cancer Res 1997; 3: 605–611.

    CAS  PubMed  Google Scholar 

  12. Cook AC, Tuck AB, McCarthy S, Turner JG, Irby RB, Bloom GC et al. Osteopontin induces multiple changes in gene expression that reflect the six ‘hallmarks of cancer’ in a model of breast cancer progression. Mol Carcinog 2005; 43: 225–236.

    CAS  PubMed  Google Scholar 

  13. Rodrigues LR, Teixeira JA, Schmitt FL, Paulsson M, Lindmark-Mansson H . The role of osteopontin in tumor progression and metastasis in breast cancer. Cancer Epidemiol Biomarkers Prev 2007; 16: 1087–1097.

    CAS  PubMed  Google Scholar 

  14. McAllister SS, Gifford AM, Greiner AL, Kelleher SP, Saelzler MP, Ince TA et al. Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 2008; 133: 994–1005.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Elkabets M, Gifford AM, Scheel C, Nilsson B, Reinhardt F, Bray MA et al. Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. J Clin Invest 2011; 121: 784–799.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Anderberg C, Li H, Fredriksson L, Andrae J, Betsholtz C, Li X et al. Paracrine signaling by platelet-derived growth factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts. Cancer Res 2009; 69: 369–378.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mi Z, Bhattacharya SD, Kim VM, Guo H, Talbot LJ, Kuo PC . Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis 2011; 32: 477–487.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Denhardt DT, Guo X . Osteopontin: a protein with diverse functions. FASEB J 1993; 7: 1475–1482.

    CAS  PubMed  Google Scholar 

  19. Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA 2010; 107: 20009–20014.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim SJ, Glick A, Sporn MB, Roberts AB . Characterization of the promoter region of the human transforming growth factor-beta 1 gene. J Biol Chem 1989; 264: 402–408.

    CAS  PubMed  Google Scholar 

  21. Qi W, Gao S, Wang Z . Transcriptional regulation of the TGF-β1 promoter by androgen receptor. Biochem J 2008; 416: 453–462.

    CAS  PubMed  Google Scholar 

  22. Morris JF, Hromas R, Rauscher FJ 3rd . Characterization of the DNA-binding properties of the myeloid zinc finger protein MZF1: two independent DNA-binding domains recognize two DNA consensus sequences with a common G-rich core. Mol Cell Biol 1994; 14: 1786–1795.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hromas R, Morris J, Cornetta K, Berebitsky D, Davidson A, Sha M et al. Aberrant expression of the myeloid zinc finger gene, MZF-1, is oncogenic. Cancer Res 1995; 55: 3610–3614.

    CAS  PubMed  Google Scholar 

  24. Tsai S-J, Hwang J-M, Hsieh S-C, Ying T-H, Hsieh Y-H . Overexpression of myeloid zinc finger 1 suppresses matrix metalloproteinase-2 expression and reduces invasiveness of SiHa human cervical cancer cells. Biochem Biophys Res Commun 2012; 425: 462–467.

    CAS  PubMed  Google Scholar 

  25. Rafn B, Nielsen Christian F, Andersen Sofie H, Szyniarowski P, Corcelle-Termeau E, Valo E et al. ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression. Mol Cell 2012; 45: 764–776.

    CAS  PubMed  Google Scholar 

  26. Hsieh Y-H, Wu T-T, Tsai J-H, Huang C-Y, Hsieh Y-S, Liu J-Y . PKCα expression regulated by Elk-1 and MZF-1 in human HCC cells. Biochem Biophys Res Commun 2006; 339: 217–225.

    CAS  PubMed  Google Scholar 

  27. Gaboli M, Kotsi PA, Gurrieri C, Cattoretti G, Ronchetti S, Cordon-Cardo C et al. Mzf1 controls cell proliferation and tumorigenesis. Genes Dev 2001; 15: 1625–1630.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mi Z, Guo H, Russell MB, Liu Y, Sullenger BA, Kuo PC . RNA aptamer blockade of osteopontin inhibits growth and metastasis of MDA-MB231 breast cancer cells. Mol Ther 2009; 17: 153–161.

    CAS  PubMed  Google Scholar 

  29. Mi Z, Guo H, Kuo PC . Identification of osteopontin-dependent signaling pathways in a mouse model of human breast cancer. BMC Res Notes 2009; 2: 119.

    PubMed  PubMed Central  Google Scholar 

  30. Bhattacharya SD, Mi Z, Kim VM, Guo H, Talbot LJ, Kuo PC . Osteopontin regulates epithelial mesenchymal transition-associated growth of hepatocellular cancer in a mouse xenograft model. Ann Surg 2012; 255: 319–325.

    PubMed  Google Scholar 

  31. Korpal M, Yan J, Lu X, Xu S, Lerit DA, Kang Y . Imaging transforming growth factor-[beta] signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat Med 2009; 15: 960–966.

    CAS  PubMed  Google Scholar 

  32. Pang H, Lu H, Song H, Meng Q, Zhao Y, Liu N et al. Prognostic values of osteopontin-c, E-cadherin and beta-catenin in breast cancer. Cancer Epidemiol 2013; 37: 985–992.

    PubMed  Google Scholar 

  33. Patani N, Jouhra F, Jiang W, Mokbel K . Osteopontin expression profiles predict pathological and clinical outcome in breast cancer. Anticancer Res 2008; 28: 4105–4110.

    CAS  PubMed  Google Scholar 

  34. Xu LN, Xu BN, Cai J, Yang JB, Lin N . Tumor-associated fibroblast-conditioned medium promotes tumor cell proliferation and angiogenesis. Genet Mol Res 2013; 12: 5863–5871.

    CAS  PubMed  Google Scholar 

  35. Mao Y, Keller E, Garfield D, Shen K, Wang J . Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 2012; 32: 303–315.

    Google Scholar 

  36. Huang WH, Chang MC, Tsai KS, Hung MC, Chen HL, Hung SC . Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene 2012; 32: 4343–4354.

    PubMed  Google Scholar 

  37. Brauer HA, Makowski L, Hoadley KA, Casbas-Hernandez P, Lang LJ, Roman-Perez E et al. Impact of tumor microenvironment and epithelial phenotypes on metabolism in breast cancer. Clin Cancer Res 2012; 19: 571–585.

    PubMed  PubMed Central  Google Scholar 

  38. Boxall SA, Jones E . Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int 2012; 2012: 975871.

    PubMed  PubMed Central  Google Scholar 

  39. Quante M, Tu SP, Tomita H, Gonda T, Wang SSW, Takashi S et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 2011; 19: 257–272.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Orimo A, Weinberg RA . Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 2006; 5: 1597–1601.

    CAS  PubMed  Google Scholar 

  41. Erez N, Truitt M, Olson P, Hanahan D . Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-[kappa]B-dependent manner. Cancer Cell 2010; 17: 135–147.

    CAS  PubMed  Google Scholar 

  42. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449: 557–563.

    CAS  PubMed  Google Scholar 

  43. Otto WR, Wright NA . Mesenchymal stem cells: from experiment to clinic. Fibrogenesis Tissue Repair 2011; 4: 20.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mishra PJ, Banerjee D . Activation and differentiation of mesenchymal stem cells. Methods Mol Biol 2011; 717: 245–253.

    CAS  PubMed  Google Scholar 

  45. Kidd S, Spaeth E, Watson K, Burks J, Lu H, Klopp A et al. Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow–derived stroma. PLoS ONE 2012; 7: e30563.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Davis C, Price R, Acharya G, Baudino T, Borg T, Berger FG et al. Hematopoietic derived cell infiltration of the intestinal tumor microenvironment in ApcMin/+ mice. Microsc Microanal 2011; 17: 528–539.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Direkze NC, Hodivala-Dilke K, Jeffery R, Hunt T, Poulsom R, Oukrif D et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 2004; 64: 8492–8495.

    CAS  PubMed  Google Scholar 

  48. Helluin O, Chan C, Vilaire G, Mousa S, DeGrado WF, Bennett JS . The activation state of alphavbeta 3 regulates platelet and lymphocyte adhesion to intact and thrombin-cleaved osteopontin. J Biol Chem 2000; 275: 18337–18343.

    CAS  PubMed  Google Scholar 

  49. O'Regan A, Berman JS . Osteopontin: a key cytokine in cell-mediated and granulomatous inflammation. Int J Exp Pathol 2000; 81: 373–390.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tuck AB, O'Malley FP, Singhal H, Harris JF, Tonkin KS, Kerkvliet N et al. Osteopontin expression in a group of lymph node negative breast cancer patients. Int J Cancer 1998; 79: 502–508.

    CAS  PubMed  Google Scholar 

  51. Fedarko NS, Jain A, Karadag A, Van Eman MR, Fisher LW . Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clin Cancer Res 2001; 7: 4060–4066.

    CAS  PubMed  Google Scholar 

  52. Tuck AB, Chambers AF . The role of osteopontin in breast cancer: clinical and experimental studies. J Mammary Gland Biol Neoplasia 2001; 6: 419–429.

    CAS  PubMed  Google Scholar 

  53. Yu K-N, Minai-Tehrani A, Chang S-H, Hwang S-K, Hong S-H, Kim J-E et al. Aerosol delivery of small hairpin osteopontin blocks pulmonary metastasis of breast cancer in mice. PLoS ONE 2010; 5: e15623.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tuck AB, Chambers AF, Allan AL . Osteopontin overexpression in breast cancer: knowledge gained and possible implications for clinical management. J Cell Biochem 2007; 102: 859–868.

    CAS  PubMed  Google Scholar 

  55. Shevde LA, Samant RS, Paik JC, Metge BJ, Chambers AF, Casey G et al. Osteopontin knockdown suppresses tumorigenicity of human metastatic breast carcinoma, MDA-MB-435. Clin Exp Metastasis 2006; 23: 123–133.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ashkar S, Weber GF, Panoutsakopoulou V, Sanchirico ME, Jansson M, Zawaideh S et al. ETA-1: an early component of type-1 immunity. Science 2000; 287: 860–864.

    CAS  PubMed  Google Scholar 

  57. Goodison S, Urquidi V, Tarin D . CD44 cell adhesion molecules. Mol Pathol 1999; 52: 189–196.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wai PY, Kuo PC . The role of Osteopontin in tumor metastasis. J Surg Res 2004; 121: 228–241.

    CAS  PubMed  Google Scholar 

  59. Brown LF, Papadopoulos-Sergiou A, Berse B, Manseau EJ, Tognazzi K, Perruzzi CA et al. Osteopontin expression and distribution in human carcinomas. Am J Pathol 1994; 145: 610–623.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Matsuzaki H, Shima K, Muramatsu T, Ro Y, Hashimoto S, Shibahara T et al. Osteopontin as biomarker in early invasion by squamous cell carcinoma in tongue. J Oral Pathol Med 2007; 36: 30–34.

    CAS  PubMed  Google Scholar 

  61. Gao M-Q, Kim BG, Kang S, Choi YP, Park H, Kang KS et al. Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial-mesenchymal transition-like state in breast cancer cells in vitro. J Cell Sci 2010; 123: 3507–3514.

    CAS  PubMed  Google Scholar 

  62. Udagawa T, Puder M, Wood M, Schaefer BC, D'Amato RJ . Analysis of tumor-associated stromal cells using SCID GFP transgenic mice: contribution of local and bone marrow-derived host cells. FASEB J 2006; 20: 95–102.

    CAS  PubMed  Google Scholar 

  63. Wang H, Cao F, De A, Cao Y, Contag C, Gambhir SS et al. Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells 2009; 27: 1548–1558.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Casey T, Eneman J, Crocker A, White J, Tessitore J, Stanley M et al. Cancer associated fibroblasts stimulated by transforming growth factor beta1 (TGF-β1) increase invasion rate of tumor cells: a population study. Breast Cancer Res Treat 2008; 110: 39–49.

    CAS  PubMed  Google Scholar 

  65. Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 2011; 19: 257–272.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hawinkels LJ, Paauwe M, Verspaget HW, Wiercinska E, van der Zon JM, van der Ploeg K et al. Interaction with colon cancer cells hyperactivates TGF-beta signaling in cancer-associated fibroblasts. Oncogene 2012; 33: 97–107.

    PubMed  Google Scholar 

  67. Su G, Sung KE, Beebe DJ, Friedl A . Functional screen of paracrine signals in breast carcinoma fibroblasts. PLoS ONE 2012; 7: e46685.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nicholas SB, Liu J, Kim J, Ren Y, Collins AR, Nguyen L et al. Critical role for osteopontin in diabetic nephropathy. Kidney Int 2010; 77: 588–600.

    CAS  PubMed  Google Scholar 

  69. Vetrone SA, Montecino-Rodriguez E, Kudryashova E, Kramerova I, Hoffman EP, Liu SD et al. Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta. J Clin Invest 2009; 119: 1583–1594.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wolak T, Kim H, Ren Y, Kim J, Vaziri ND, Nicholas SB . Osteopontin modulates angiotensin II-induced inflammation, oxidative stress, and fibrosis of the kidney. Kidney Int 2009; 76: 32–43.

    CAS  PubMed  Google Scholar 

  71. Szalay G, Sauter M, Haberland M, Zuegel U, Steinmeyer A, Kandolf R et al. Osteopontin: a fibrosis-related marker molecule in cardiac remodeling of enterovirus myocarditis in the susceptible host. Circ Res 2009; 104: 851–859.

    CAS  PubMed  Google Scholar 

  72. Kohan M, Breuer R, Berkman N . Osteopontin induces airway remodeling and lung fibroblast activation in a murine model of asthma. Am J Respir Cell Mol Biol 2009; 41: 290–296.

    CAS  PubMed  Google Scholar 

  73. Miyazaki K, Okada Y, Yamanaka O, Kitano A, Ikeda K, Kon S et al. Corneal wound healing in an osteopontin-deficient mouse. Invest Ophthalmol Vis Sci 2008; 49: 1367–1375.

    PubMed  Google Scholar 

  74. Syn WK, Choi SS, Liaskou E, Karaca GF, Agboola KM, Oo YH et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology 2011; 53: 106–115.

    CAS  PubMed  Google Scholar 

  75. Lenga Y, Koh A, Perera AS, McCulloch CA, Sodek J, Zohar R . Osteopontin expression is required for myofibroblast differentiation. Circ Res 2008; 102: 319–327.

    CAS  PubMed  Google Scholar 

  76. Mudduluru G, Vajkoczy P, Allgayer H . Myeloid zinc finger 1 induces migration, invasion, and in vivo metastasis through Axl gene expression in solid cancer. Mol Cancer Res 2010; 8: 159–169.

    CAS  PubMed  Google Scholar 

  77. Hsieh YH, Wu TT, Huang CY, Hsieh YS, Liu JY . Suppression of tumorigenicity of human hepatocellular carcinoma cells by antisense oligonucleotide MZF-1. Chin J Physiol 2007; 50: 9–15.

    CAS  PubMed  Google Scholar 

  78. Que-Gewirth NS, Sullenger BA . Gene therapy progress and prospects: RNA aptamers. Gene Ther 2007; 14: 283–291.

    CAS  PubMed  Google Scholar 

  79. Ireson CR, Kelland LR . Discovery and development of anticancer aptamers. Mol Cancer Ther 2006; 5: 2957–2962.

    CAS  PubMed  Google Scholar 

  80. Wong TY, Liew G, Mitchell P . Clinical update: new treatments for age-related macular degeneration. Lancet 2007; 370: 204–206.

    PubMed  Google Scholar 

  81. Mak GW, Lai WL, Zhou Y, Li M, Ng IO, Ching YP . CDK5RAP3 is a novel repressor of p14ARF in hepatocellular carcinoma cells. PLoS ONE 2012; 7: e42210.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Keng PC, Allalunis-Turner J, Siemann DW . Evaluation of cell subpopulations isolated from human tumor xenografts by centrifugal elutriation. Int J Radiat Oncol Biol Phys 1990; 18: 1061–1067.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH grants: GM65113, CA155306 and UL1 RR024128. We thank Andy Hall, Research Histology Manager, at the University of Illinois at Chicago Research Resources Center who performed all immunohistochemical staining and mounting. We also thank Dr Dariusz Borys, of the Loyola Department of Pathology, for assistance with the imaging of slides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P C Kuo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, C., Kothari, A., Wai, P. et al. Osteopontin mediates an MZF1–TGF-β1-dependent transformation of mesenchymal stem cells into cancer-associated fibroblasts in breast cancer. Oncogene 34, 4821–4833 (2015). https://doi.org/10.1038/onc.2014.410

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.410

This article is cited by

Search

Quick links