Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SPL6 represses signalling outputs of ER stress in control of panicle cell death in rice

Abstract

Inositol-requiring enzyme 1 (IRE1) is the most conserved transducer of the unfolded protein response that produces either adaptive or death signals depending on the amplitude and duration of its activation. Here, we report that SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 6 (SPL6)-deficient plants displayed hyperactivation of the endoplasmic reticulum (ER) stress sensor IRE1, leading to cell death in rice panicles, indicating that SPL6 is an essential survival factor for the suppression of persistent or intense ER stress conditions. Importantly, knockdown of the hyperactivated mRNA level of IRE1 rescues panicle apical abortion in the spl6-1 transgenic plants harbouring the IRE1-RNAi constructs, establishing the genetic linkage between the hyperactivation of IRE1 and cell death in spl6-1. Our findings reveal a novel cell survival machinery in which SPL6 represses the transcriptional activation of the ER stress sensor IRE1 in control of ER stress signalling outputs that hinge on a balance between adaptive and death signals for determining cell fates during ER stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Loss of function of SPL6 causes panicle apical abortion.
Fig. 2: SPL6 regulates panicle development.
Fig. 3: Knockout of SPL6 leads to precocious cell death.
Fig. 4: Loss of function of SPL6 induces hyperactivation of IRE1.
Fig. 5: Knockdown of the hyperactivated mRNA level of IRE1 rescues panicle apical abortion in spl6-1.
Fig. 6: SPL6 represses the transcriptional activation of IRE1.

Similar content being viewed by others

References

  1. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89–102 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Howell, S. H. Endoplasmic reticulum stress responses in plants. Annu. Rev. Plant Biol. 64, 477–499 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Deng, Y. et al. Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. Proc. Natl Acad. Sci. USA 108, 7247–7252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nagashima, Y. et al. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor. Sci. Rep. 1, 29 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hayashi, S., Wakasa, Y., Takahashi, H., Kawakatsu, T. & Takaiwa, F. Signal transduction by IRE1-mediated splicing of bZIP50 and other stress sensors in the endoplasmic reticulum stress response of rice. Plant J. 69, 946–956 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Lu, S.-J. et al. Conservation of IRE1-regulated bZIP74 mRNA unconventional splicing in rice (Oryza sativa L.) involved in ER stress responses. Mol. Plant 5, 504–514 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Rao, R. V., Ellerby, H. M. & Bredesen, D. E. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ. 11, 372–380 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Maurel, M., Chevet, E., Tavernier, J. & Gerlo, S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem. Sci. 39, 245–254 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, Y. & Brandizzi, F. IRE1: ER stress sensor and cell fate executor. Trends Cell Biol. 23, 547–555 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Klein, J., Saedler, H. & Huijser, P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol. Gen. Genet. 250, 7–16 (1996).

    CAS  PubMed  Google Scholar 

  13. Wu, G. & Poethig, R. S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133, 3539–3547 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Usami, T., Horiguchi, G., Yano, S. & Tsukaya, H. The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development 136, 955–964 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, J.-W., Czech, B. & Weigel, D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138, 738–749 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Yamaguchi, A. et al. The microRNA-regulated SBP-box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev. Cell 17, 268–278 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cardon, G. H., Hohmann, S., Nettesheim, K., Saedler, H. & Huijser, P. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J. 12, 367–377 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, H. et al. The origin of the naked grains of maize. Nature 436, 714–719 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manning, K. et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38, 948–952 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Unte, U. S. et al. SPL8, an SBP-Box gene that affects pollen sac development in Arabidopsis. Plant Cell 15, 1009–1019 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiao, Y. et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Miura, K. et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545–549 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, Z. F. et al. Genetic control of inflorescence architecture during rice domestication. Nat. Commun. 4, 2200 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Chuck, G. S., Brown, P. J., Meeley, R. & Hake, S. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc. Natl Acad. Sci. USA 111, 18775–18780 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Preston, J. C. & Hileman, L. C. Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Front. Plant Sci. 4, 80 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Xie, K., Wu, C. & Xiong, L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol. 142, 280–293 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rhoades, M. W. et al. Prediction of plant microRNA targets. Cell 110, 513–520 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, J. et al. A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science 337, 1336–1340 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Birkenbihl, R. P., Jach, G., Saedler, H. & Huijser, P. Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains. J. Mol. Biol. 352, 585–596 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Schroder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789 (2005).

    Article  PubMed  Google Scholar 

  31. Woehlbier, U. & Hetz, C. Modulating stress responses by the UPRosome: a matter of life and death. Trends Biochem. Sci. 36, 329–337 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Zuppini, A., Navazio, L. & Mariani, P. Endoplasmic reticulum stress-induced programmed cell death in soybean cells. J. Cell Sci. 117, 2591–2598 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Iwata, Y. & Koizumi, N. Unfolded protein response followed by induction of cell death in cultured tobacco cells treated with tunicamycin. Planta 220, 804–807 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe, N. & Lam, E. BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis. J. Biol. Chem. 283, 3200–3210 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Qiang, X., Zechmann, B., Reitz, M. U., Kogel, K.-H. & Schaefer, P. The mutualistic fungus Piriformospora indica colonizes Arabidopsis roots by inducing an endoplasmic reticulum stress-triggered caspase-dependent cell death. Plant Cell 24, 794–809 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, Z.-T. et al. The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants. PLoS Genet. 10, e1004243 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Deng, Y., Srivastava, R. & Howell, S. H. Endoplasmic reticulum (ER) stress response and its physiological roles in plants. Int. J. Mol. Sci. 14, 8188–8212 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Iwata, Y. & Koizumi, N. Plant transducers of the endoplasmic reticulum unfolded protein response. Trends Plant Sci. 17, 720–727 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Akter, M. B. et al. Fine mapping and candidate gene analysis of a new mutant gene for panicle apical abortion in rice. Euphytica 197, 387–398 (2014).

    Article  CAS  Google Scholar 

  41. Yamagishi, J., Miyamoto, N., Hirotsu, S., Laza, R. C. & Nemoto, K. QTLs for branching, floret formation, and pre-flowering floret abortion of rice panicle in a temperate japonica × tropical japonica cross. Theor. Appl. Genet. 109, 1555–1561 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Tan, C. J., Sun, Y. J., Xu, H. S. & Yu, S. B. Identification of quantitative trait locus and epistatic interaction for degenerated spikelets on the top of panicle in rice. Plant Breed. 130, 177–184 (2011).

    Article  CAS  Google Scholar 

  43. Cheng, Z.-J. et al. Fine mapping of qPAA8, a gene controlling panicle apical development in rice. J. Integr. Plant Biol. 53, 710–718 (2011).

    CAS  PubMed  Google Scholar 

  44. Chen, Y. & Brandizzi, F. AtIRE1A/AtIRE1B and AGB1 independently control two essential unfolded protein response pathways in Arabidopsis. Plant J. 69, 266–277 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Wakasa, Y., Hayashi, S., Ozawa, K. & Takaiwa, F. Multiple roles of the ER stress sensor IRE1 demonstrated by gene targeting in rice. Sci. Rep. 2, 944 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Toki, S. et al. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J. 47, 969–976 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Yu, H.-D. et al. Downregulation of chloroplast RPS1 negatively modulates nuclear heat-responsive expression of HsfA2 and its target genes in Arabidopsis. PLoS Genet. 8, e1002669 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu, G. et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750–759 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Phan, H. A., Iacuone, S., Li, S. F. & Parish, R. W. The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell 23, 2209–2224 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guan, Q., Yue, X., Zeng, H. & Zhu, J. The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis. Plant Cell 26, 438–453 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Chinese Academy of Sciences (Strategic Priority Research Program XDPB0404), the Ministry of Science and Technology of China (National Key R&D Program of China, 2016YFD0100405), the National Natural Science Foundation of China (31770314 and 31570260) and the Chinese Academy of Sciences (XDA08010203). We thank the Rice T-DNA Insertion Sequence Database for providing the rice mutant lines; H.-T. Liu, X.-F. Yang and S.-Q. Zhao for suggestions and technical assistance; X.-Y. Gao, X.-S. Gao, J.-Q. Li and Z.-P. Zhang for assistance with electron microscopy and confocal microscopy.

Author information

Authors and Affiliations

Authors

Contributions

F.-Q.G. and Q.-L.W. supervised the project and designed the experiments. Q.-L.W., A.-Z.S., S.-T.C. and L.-S.C. performed the experiments. Q.-L.W., A.-Z.S. and S.-T.C. analysed the data and interpreted the results. F.-Q.G. and Q.-L.W. wrote the manuscript.

Corresponding author

Correspondence to Fang-Qing Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–22 and Supplementary Table 1.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QL., Sun, AZ., Chen, ST. et al. SPL6 represses signalling outputs of ER stress in control of panicle cell death in rice. Nature Plants 4, 280–288 (2018). https://doi.org/10.1038/s41477-018-0131-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-018-0131-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing