Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging views of the nucleus as a cellular mechanosensor

Abstract

The ability of cells to respond to mechanical forces is critical for numerous biological processes. Emerging evidence indicates that external mechanical forces trigger changes in nuclear envelope structure and composition, chromatin organization and gene expression. However, it remains unclear if these processes originate in the nucleus or are downstream of cytoplasmic signals. Here we discuss recent findings that support a direct role of the nucleus in cellular mechanosensing and highlight novel tools to study nuclear mechanotransduction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of nuclear envelope proteins involved in force transmission to the nucleus.
Fig. 2: Proposed mechanisms for how the cell nucleus could respond directly to mechanical forces.
Fig. 3: Technologies to study the effect of force transmission to the nucleus on genome organization and gene regulation.

Similar content being viewed by others

References

  1. Dewey, C. F. Jr, Bussolari, S. R., Gimbrone, M. A. Jr & Davies, P. F. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103, 177–185 (1981).

    Article  PubMed  Google Scholar 

  2. Freeman, P. M., Natarajan, R. N., Kimura, J. H. & Andriacchi, T. P. Chondrocyte cells respond mechanically to compressive loads. J. Orthop. Res. 12, 311–320 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Magid, A. & Law, D. J. Myofibrils bear most of the resting tension in frog skeletal muscle. Science 230, 1280–1282 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Le, H. Q. et al. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat. Cell Biol. 18, 864–875 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8, 633–644 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Barnes, J. M., Przybyla, L. & Weaver, V. M. Tissue mechanics regulate brain development, homeostasis and disease. J. Cell Sci. 130, 71–82 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matthews, B. D., Overby, D. R., Mannix, R. & Ingber, D. E. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J. Cell Sci. 119, 508–518 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Reidy, M. A. & Bowyer, D. E. Scanning electron microscopy of arteries. The morphology of aortic endothelium in haemodynamically stressed areas associated with branches. Atherosclerosis 26, 181–194 (1977).

    Article  CAS  PubMed  Google Scholar 

  9. Tucker, J. B. & Meats, M. Microtubules and control of insect egg shape. J. Cell Biol. 71, 207–217 (1976).

    Article  CAS  PubMed  Google Scholar 

  10. Ingber, D. E. Mechanobiology and diseases of mechanotransduction. Ann. Med. 35, 564–577 (2003).

    Article  PubMed  Google Scholar 

  11. Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10, 63–73 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Iskratsch, T., Wolfenson, H. & Sheetz, M. P. Appreciating force and shape—the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 15, 825–833 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muehlich, S., Hermanns, C., Meier, M. A., Kircher, P. & Gudermann, T. Unravelling a new mechanism linking actin polymerization and gene transcription. Nucleus 7, 121–125 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Panciera, T., Azzolin, L., Cordenonsi, M. & Piccolo, S. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 18, 758–770 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Ross, T. D. et al. Integrins in mechanotransduction. Curr. Opin. Cell Biol. 25, 613–618 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun, Z., Guo, S. S. & Fassler, R. Integrin-mediated mechanotransduction. J. Cell Biol. 215, 445–456 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Murthy, S. E., Dubin, A. E. & Patapoutian, A. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat. Rev. Mol. Cell Biol. 18, 771–783 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Fedorchak, G. R., Kaminski, A. & Lammerding, J. Cellular mechanosensing: getting to the nucleus of it all. Prog. Biophys. Mol. Biol. 115, 76–92 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Maniotis, A. J., Chen, C. S. & Ingber, D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94, 894–854 (1997).

    Article  Google Scholar 

  21. Chambliss, A. B. et al. The LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction. Sci. Rep. 3, 1087 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wang, N., Tytell, J. D. & Ingber, D. E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10, 75–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Cho, S., Irianto, J. & Discher, D. E. Mechanosensing by the nucleus: from pathways to scaling relationships. J. Cell Biol. 216, 305–315 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miroshnikova, Y. A., Nava, M. M. & Wickstrom, S. A. Emerging roles of mechanical forces in chromatin regulation. J. Cell Sci. 130, 2243–2250 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Arsenovic, P. T. et al. Nesprin-2G, a component of the nuclear LINC complex, is subject to myosin-dependent tension. Biophys. J. 110, 34–43 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guilluy, C. et al. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat. Cell Biol. 16, 376–381 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lombardi, M. L. et al. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J. Biol. Chem. 286, 26743–26753 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tajik, A. et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat. Mater. 15, 1287–1296 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Caille, N., Thoumine, O., Tardy, Y. & Meister, J. J. Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35, 177–187 (2002).

    Article  PubMed  Google Scholar 

  30. Lammerding, J. Mechanics of the nucleus. Compr. Physiol. 1, 783–807 (2011).

    PubMed  PubMed Central  Google Scholar 

  31. Dreger, M., Bengtsson, L., Schoneberg, T., Otto, H. & Hucho, F. Nuclear envelope proteomics: novel integral membrane proteins of the inner nuclear membrane. Proc. Natl Acad. Sci. USA 98, 11943–11948 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Worman, H. J. & Schirmer, E. C. Nuclear membrane diversity: underlying tissue-specific pathologies in disease? Curr. Opin. Cell Biol. 34, 101–112 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jovanovic-Talisman, T. & Zilman, A. Protein transport by the nuclear pore complex: simple biophysics of a complex biomachine. Biophys. J. 113, 6–14 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. de Leeuw, R., Gruenbaum, Y. & Medalia, O. Nuclear lamins: thin filaments with major functions. Trends Cell Biol. 28, 34–45 (2018).

    Article  PubMed  CAS  Google Scholar 

  35. Ho, C. Y. & Lammerding, J. Lamins at a glance. J. Cell Sci. 125, 2087–2093 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Genschel, J. & Schmidt, H. H. Mutations in the LMNA gene encoding lamin A/C. Hum. Mutat. 16, 451–459 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Bonne, G. et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery–Dreifuss muscular dystrophy. Nat. Genet. 21, 285–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Fatkin, D. et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N. Engl. J. Med. 341, 1715–1724 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Lammerding, J. et al. Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281, 25768–25780 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Zwerger, M. et al. Altering lamina assembly reveals lamina-dependent and -independent functions for A-type lamins. J. Cell Sci. 128, 3607–3620 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Broers, J. L. et al. Decreased mechanical stiffness in LMNA −/− cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum. Mol. Genet. 13, 2567–2580 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Dahl, K. N., Kahn, S. M., Wilson, K. L. & Discher, D. E. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J. Cell Sci. 117, 4779–4786 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Lammerding, J. et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370–378 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ivorra, C. et al. A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C. Genes Dev. 20, 307–320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Osmanagic-Myers, S., Dechat, T. & Foisner, R. Lamins at the crossroads of mechanosignaling. Genes Dev. 29, 225–237 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dorner, D. et al. Lamina-associated polypeptide 2α regulates cell cycle progression and differentiation via the retinoblastoma–E2F pathway. J. Cell Biol. 173, 83–93 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ho, C. Y., Jaalouk, D. E., Vartiainen, M. K. & Lammerding, J. Lamin A/C and emerin regulate MKL1–SRF activity by modulating actin dynamics. Nature 497, 507–511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Harr, J. C. et al. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J. Cell Biol. 208, 33–52 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Solovei, I. et al. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152, 584–598 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Harada, T. et al. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204, 669–682 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, J. S. et al. Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys. J. 93, 2542–2552 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Davidson, P. M., Denais, C., Bakshi, M. C. & Lammerding, J. Nuclear deformability constitutes a rate-limiting step during cell migration in 3-D environments. Cell. Mol. Bioeng. 7, 293–306 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Robijns, J. et al. In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells. Sci. Rep. 6, 30325 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vargas, J. D., Hatch, E. M., Anderson, D. J. & Hetzer, M. W. Transient nuclear envelope rupturing during interphase in human cancer cells. Nucleus 3, 88–100 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zwerger, M. et al. Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Hum. Mol. Genet. 22, 2335–2349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Folker, E. S., Ostlund, C., Luxton, G. W., Worman, H. J. & Gundersen, G. G. Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement. Proc. Natl Acad. Sci. USA 108, 131–136 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Bertrand, A. T. et al. Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. J. Cell Sci. 127, 2873–2884 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Cupesi, M. et al. Attenuated hypertrophic response to pressure overload in a lamin A/C haploinsufficiency mouse. J. Mol. Cell. Cardiol. 48, 1290–1297 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Buxboim, A. et al. Coordinated increase of nuclear tension and lamin-A with matrix stiffness out-competes lamin-B receptor which favors soft tissue phenotypes. Mol. Biol. Cell 28, 3333–3348 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ihalainen, T. O. et al. Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension. Nat. Mater. 14, 1252–1261 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Sullivan, T. et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147, 913–920 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kubben, N. et al. Post-natal myogenic and adipogenic developmental: defects and metabolic impairment upon loss of A-type lamins. Nucleus 2, 195–207 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Alam, S. G. et al. The nucleus is an intracellular propagator of tensile forces in NIH 3T3 fibroblasts. J. Cell Sci. 128, 1901–1911 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Crisp, M. & Burke, B. The nuclear envelope as an integrator of nuclear and cytoplasmic architecture. FEBS Lett. 582, 2023–2032 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Chang, W., Worman, H. J. & Gundersen, G. G. Accessorizing and anchoring the LINC complex for multifunctionality. J. Cell Biol. 208, 11–22 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rajgor, D. & Shanahan, C. M. Nesprins: from the nuclear envelope and beyond. Expert Rev. Mol. Med. 15, e5 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Wilson, M. H. & Holzbaur, E. L. Nesprins anchor kinesin-1 motors to the nucleus to drive nuclear distribution in muscle cells. Development 142, 218–228 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Fridolfsson, H. N., Ly, N., Meyerzon, M. & Starr, D. A. UNC-83 coordinates kinesin-1 and dynein activities at the nuclear envelope during nuclear migration. Dev. Biol. 338, 237–250 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Wilhelmsen, K. et al. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J. Cell Biol. 171, 799–810 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Roux, K. J. et al. Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc. Natl Acad. Sci. USA 106, 2194–2199 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Horn, H. F. LINC complex proteins in development and disease. Curr. Top. Dev. Biol. 109, 287–321 (2014).

    Article  PubMed  Google Scholar 

  73. Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Thiam, H. R. et al. Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat. Commun. 7, 10997 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Banerjee, I. et al. Targeted ablation of nesprin 1 and nesprin 2 from murine myocardium results in cardiomyopathy, altered nuclear morphology and inhibition of the biomechanical gene response. PLoS Genet. 10, e1004114 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lottersberger, F., Karssemeijer, R. A., Dimitrova, N. & de Lange, T. 53BP1 and the LINC complex promote microtubule-dependent DSB mobility and DNA repair. Cell 163, 880–893 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Makhija, E., Jokhun, D. S. & Shivashankar, G. V. Nuclear deformability and telomere dynamics are regulated by cell geometric constraints. Proc. Natl Acad. Sci. USA 113, 32–40 (2016).

    Article  CAS  Google Scholar 

  78. Keeling, M. C., Flores, L. R., Dodhy, A. H., Murray, E. R. & Gavara, N. Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization. Sci. Rep. 7, 5219 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hatch, E. M. & Hetzer, M. W. Nuclear envelope rupture is induced by actin-based nucleus confinement. J. Cell Biol. 215, 27–36 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60, 24–34 (2005).

    Article  Google Scholar 

  81. Swift, J. & Discher, D. E. The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue. J. Cell Sci. 127, 3005–3015 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Staszewska, I., Fischer, I. & Wiche, G. Plectin isoform 1-dependent nuclear docking of desmin networks affects myonuclear architecture and expression of mechanotransducers. Hum. Mol. Genet. 24, 7373–7389 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Konieczny, P. et al. Myofiber integrity depends on desmin network targeting to Z-disks and costameres via distinct plectin isoforms. J. Cell Biol. 181, 667–681 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stroud, M. J. et al. Nesprin 1α2 is essential for mouse postnatal viability and nuclear positioning in skeletal muscle. J. Cell Biol. 216, 1915–1924 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bone, C. R. & Starr, D. A. Nuclear migration events throughout development. J. Cell Sci. 129, 1951–1961 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Collins, M. A. et al. Emery–Dreifuss muscular dystrophy-linked genes and centronuclear myopathy-linked genes regulate myonuclear movement by distinct mechanisms. Mol. Biol. Cell 28, 2303–2317 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Roman, W. et al. Myofibril contraction and crosslinking drive nuclear movement to the periphery of skeletal muscle. Nat. Cell Biol. 19, 1189–1201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, Q. et al. Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum. Mol. Genet. 16, 2816–2833 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Puckelwartz, M. J. et al. Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Hum. Mol. Genet. 18, 607–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Stroud, M. J., Banerjee, I., Veevers, J. & Chen, J. Linker of nucleoskeleton and cytoskeleton complex proteins in cardiac structure, function, and disease. Circ. Res. 114, 538–548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. De Vos, W. H. et al. Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum. Mol. Genet. 20, 4175–4186 (2011).

    Article  PubMed  CAS  Google Scholar 

  92. Zuela, N., Zwerger, M., Levin, T., Medalia, O. & Gruenbaum, Y. Impaired mechanical response of an EDMD mutation leads to motility phenotypes that are repaired by loss of prenylation. J. Cell Sci. 129, 1781–1791 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Gonzalez-Granado, J. M. et al. Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation. Sci. Signal. 7, ra37 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Khatau, S. B. et al. The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration. Sci. Rep. 2, 488 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Chang, W., Antoku, S., Ostlund, C., Worman, H. J. & Gundersen, G. G. Linker of nucleoskeleton and cytoskeleton (LINC) complex-mediated actin-dependent nuclear positioning orients centrosomes in migrating myoblasts. Nucleus 6, 77–88 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. King, S. J. et al. Nesprin-1 and nesprin-2 regulate endothelial cell shape and migration. Cytoskeleton 71, 423–434 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Horn, H. F. et al. The LINC complex is essential for hearing. J. Clin. Invest. 123, 740–750 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Potter, C. et al. Multiple isoforms of nesprin1 are integral components of ciliary rootlets. Curr. Biol. 27, 2014–2022 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Stewart, R. M. et al. Nuclear–cytoskeletal linkages facilitate cross talk between the nucleus and intercellular adhesions. J. Cell Biol. 209, 403–418 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, X. et al. SUN1/2 and syne/nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64, 173–187 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Khatau, S. B. et al. A perinuclear actin cap regulates nuclear shape. Proc. Natl Acad. Sci. USA 106, 19017–19022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Driscoll, T. P., Cosgrove, B. D., Heo, S. J., Shurden, Z. E. & Mauck, R. L. Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells. Biophys. J. 108, 2783–2793 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ramdas, N. M. & Shivashankar, G. V. Cytoskeletal control of nuclear morphology and chromatin organization. J. Mol. Biol. 427, 695–706 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Geyer, P. K., Vitalini, M. W. & Wallrath, L. L. Nuclear organization: taking a position on gene expression. Curr. Opin. Cell Biol. 23, 354–359 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen, H. et al. Functional organization of the human 4D Nucleome. Proc. Natl Acad. Sci. USA 112, 8002–8007 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Misteli, T. Beyond the sequence: cellular organization of genome function. Cell 128, 787–800 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Sexton, T., Schober, H., Fraser, P. & Gasser, S. M. Gene regulation through nuclear organization. Nat. Struct. Mol. Biol. 14, 1049–1055 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Zullo, J. M. et al. DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell 149, 1474–1487 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Wang, Y., Nagarajan, M., Uhler, C. & Shivashankar, G. V. Orientation and repositioning of chromosomes correlate with cell geometry-dependent gene expression. Mol. Biol. Cell 28, 1997–2009 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Spagnol, S. T. & Dahl, K. N. Spatially resolved quantification of chromatin condensation through differential local rheology in cell nuclei fluorescence lifetime imaging. PLoS ONE 11, e0146244 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Booth-Gauthier, E. A., Alcoser, T. A., Yang, G. & Dahl, K. N. Force-induced changes in subnuclear movement and rheology. Biophys. J. 103, 2423–2431 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Poh, Y. C. et al. Dynamic force-induced direct dissociation of protein complexes in a nuclear body in living cells. Nat. Commun. 3, 866 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Spagnol, S. T., Armiger, T. J. & Dahl, K. N. Mechanobiology of chromatin and the nuclear interior. Cell. Mol. Bioeng. 9, 268–276 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chalut, K. J. et al. Chromatin decondensation and nuclear softening accompany Nanog downregulation in embryonic stem cells. Biophys. J. 103, 2060–2070 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dahl, K. N., Engler, A. J., Pajerowski, J. D. & Discher, D. E. Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophys. J. 89, 2855–2864 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Stephens, A. D., Banigan, E. J., Adam, S. A., Goldman, R. D. & Marko, J. F. Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus. Mol. Biol. Cell 28, 1984–1996 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Stephens, A. D. et al. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins. Mol. Biol. Cell 29, 220–233 (2018).

    Article  PubMed  Google Scholar 

  118. Cui, Y. & Bustamante, C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl Acad. Sci. USA 97, 127–132 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bennett, R. R. et al. Elastic-fluid model for DNA damage and mutation from nuclear fluid segregation due to cell migration. Biophys. J. 112, 2271–2279 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Irianto, J. et al. DNA damage follows repair factor depletion and portends genome variation in cancer cells after pore migration. Curr. Biol. 27, 210–223 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Buxboim, A. et al. Matrix elasticity regulates lamin-A, C phosphorylation and turnover with feedback to actomyosin. Curr. Biol. 24, 1909–1917 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tifft, K. E., Bradbury, K. A. & Wilson, K. L. Tyrosine phosphorylation of nuclear-membrane protein emerin by Src, Abl and other kinases. J. Cell Sci. 122, 3780–3790 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Enyedi, B., Jelcic, M. & Niethammer, P. The cell nucleus serves as a mechanotransducer of tissue damage-induced inflammation. Cell 165, 1160–1170 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Enyedi, B. & Niethammer, P. Nuclear membrane stretch and its role in mechanotransduction. Nucleus 8, 156–161 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Heald, R. & Cohen-Fix, O. Morphology and function of membrane-bound organelles. Curr. Opin. Cell Biol. 26, 79–86 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Shibata, Y. et al. Mechanisms determining the morphology of the peripheral ER. Cell 143, 774–788 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Isermann, P. & Lammerding, J. Consequences of a tight squeeze: nuclear envelope rupture and repair. Nucleus 8, 268–274 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Takaki, T. et al. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability. Nat. Commun. 8, 16013 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lammerding, J. & Wolf, K. Nuclear envelope rupture: actin fibers are putting the squeeze on the nucleus. J. Cell Biol. 215, 5–8 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Le Berre, M., Aubertin, J. & Piel, M. Fine control of nuclear confinement identifies a threshold deformation leading to lamina rupture and induction of specific genes. Integr. Biol. 4, 1406–1414 (2012).

    Article  CAS  Google Scholar 

  133. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Gluck, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Chug, H., Trakhanov, S., Hulsmann, B. B., Pleiner, T. & Gorlich, D. Crystal structure of the metazoan Nup62•Nup58•Nup54 nucleoporin complex. Science 350, 106–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Stuwe, T. et al. Architecture of the fungal nuclear pore inner ring complex. Science 350, 56–64 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Solmaz, S. R., Blobel, G. & Melcak, I. Ring cycle for dilating and constricting the nuclear pore. Proc. Natl Acad. Sci. USA 110, 5858–5863 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu, Q. et al. Functional association of Sun1 with nuclear pore complexes. J. Cell Biol. 178, 785–798 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jahed, Z., Soheilypour, M., Peyro, M. & Mofrad, M. R. The LINC and NPC relationship—it’s complicated! J. Cell Sci. 129, 3219–3229 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat. Rev. Mol. Cell Biol. 4, 757–766 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Dorner, D., Gotzmann, J. & Foisner, R. Nucleoplasmic lamins and their interaction partners, LAP2α, Rb, and BAF, in transcriptional regulation. FEBS J. 274, 1362–1373 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Markiewicz, E., Dechat, T., Foisner, R., Quinlan, R. A. & Hutchison, C. J. Lamin A/C binding protein LAP2α is required for nuclear anchorage of retinoblastoma protein. Mol. Biol. Cell 13, 4401–4413 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ma, H. et al. Multicolor CRISPR labeling of chromosomal loci in human cells. Proc. Natl Acad. Sci. USA 112, 3002–3007 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Shao, S. et al. Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res. 44, e86 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Donnert, G. et al. Macromolecular-scale resolution in biological fluorescence microscopy. Proc. Natl Acad. Sci. USA 103, 11440–11445 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Belton, J. M. et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58, 268–276 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).

    Article  Google Scholar 

  153. Neelam, S. et al. Direct force probe reveals the mechanics of nuclear homeostasis in the mammalian cell. Proc. Natl Acad. Sci. USA 112, 5720–5725 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Krause, M., Te Riet, J. & Wolf, K. Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy. Phys. Biol. 10, 065002 (2013).

    Article  PubMed  CAS  Google Scholar 

  155. Arsenovic, P. T., Bathula, K. & Conway, D. E. A protocol for using Förster resonance energy transfer (FRET)-force biosensors to measure mechanical forces across the nuclear LINC complex. J. Vis. Exp. 122, e54902 (2017).

    Google Scholar 

  156. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Meng, F., Suchyna, T. M., Lazakovitch, E., Gronostajski, R. M. & Sachs, F. Real time FRET based detection of mechanical stress in cytoskeletal and extracellular matrix proteins. Cell. Mol. Bioeng. 4, 148–159 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Fedorchak, G. & Lammerding, J. Cell Microharpooning to study nucleo-cytoskeletal coupling. Methods Mol. Biol. 1411, 241–254 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Lombardi, M. L., Zwerger, M. & Lammerding, J. Biophysical assays to probe the mechanical properties of the interphase cell nucleus: substrate strain application and microneedle manipulation. J. Vis. Exp. 55, e3087 (2011).

    Google Scholar 

  160. Britton, S., Coates, J. & Jackson, S. P. A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J. Cell Biol. 202, 579–595 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bianchini, P., Cardarelli, F., Di Luca, M., Diaspro, A. & Bizzarri, R. Nanoscale protein diffusion by STED-based pair correlation analysis. PLoS ONE 9, e99619 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Failla, A. V., Spoeri, U., Albrecht, B., Kroll, A. & Cremer, C. Nanosizing of fluorescent objects by spatially modulated illumination microscopy. Appl. Opt. 41, 7275–7283 (2002).

    Article  PubMed  Google Scholar 

  163. Hildenbrand, G. et al. Nano-sizing of specific gene domains in intact human cell nuclei by spatially modulated illumination light microscopy. Biophys. J. 88, 4312–4318 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Reymann, J. et al. High-precision structural analysis of subnuclear complexes in fixed and live cells via spatially modulated illumination (SMI) microscopy. Chromosome Res. 16, 367–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Cremer, C., Szczurek, A., Schock, F., Gourram, A. & Birk, U. Super-resolution microscopy approaches to nuclear nanostructure imaging. Methods 123, 11–32 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Lesterlin, C., Ball, G., Schermelleh, L. & Sherratt, D. J. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 506, 249–253 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Schermelleh, L. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320, 1332–1336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Henriques, R., Griffiths, C., Hesper Rego, E. & Mhlanga, M. M. PALM and STORM: unlocking live-cell super-resolution. Biopolymers 95, 322–331 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Boettiger, A. N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ricci, M. A., Manzo, C., Garcia-Parajo, M. F., Lakadamyali, M. & Cosma, M. P. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160, 1145–1158 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to all authors whose work could not be cited due to space constraints. This work was supported by awards from the National Institutes of Health (R01 HL082792 and U54 CA210184), the Department of Defense Breast Cancer Research Program (Breakthrough Award BC150580), the National Science Foundation (CAREER Award CBET-1254846 and MCB-1715606) and a Fleming Postdoctoral Fellowship to T.J.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Lammerding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirby, T.J., Lammerding, J. Emerging views of the nucleus as a cellular mechanosensor. Nat Cell Biol 20, 373–381 (2018). https://doi.org/10.1038/s41556-018-0038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-018-0038-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing