Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diverging inflammasome signals in tumorigenesis and potential targeting

Abstract

Inflammasomes are molecular platforms that assemble upon sensing various intracellular stimuli. Inflammasome assembly leads to activation of caspase 1, thereby promoting the secretion of bioactive interleukin-1β (IL-1β) and IL-18 and inducing an inflammatory cell death called pyroptosis. Effectors of the inflammasome efficiently drive an immune response, primarily providing protection against microbial infections and mediating control over sterile insults. However, aberrant inflammasome signalling is associated with pathogenesis of inflammatory and metabolic diseases, neurodegeneration and malignancies. Chronic inflammation perpetuated by inflammasome activation plays a central role in all stages of tumorigenesis, including immunosuppression, proliferation, angiogenesis and metastasis. Conversely, inflammasome signalling also contributes to tumour suppression by maintaining intestinal barrier integrity, which portrays the diverse roles of inflammasomes in tumorigenesis. Studies have underscored the importance of environmental factors, such as diet and gut microbiota, in inflammasome signalling, which in turn influences tumorigenesis. In this Review, we deliver an overview of the interplay between inflammasomes and tumorigenesis and discuss their potential as therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diverse mechanisms of inflammasome activation.
Fig. 2: Pro-tumorigenic roles of inflammasome components.
Fig. 3: Protective roles of inflammasomes in cancer.
Fig. 4: Inflammasome–microbiota axis in intestinal homeostasis.
Fig. 5: Inflammasome signalling during chemotherapy.

Similar content being viewed by others

References

  1. Sharma, D. & Kanneganti, T. D. The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J. Cell Biol. 213, 617–629 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    CAS  PubMed  Google Scholar 

  3. Kesavardhana, S. & Kanneganti, T. D. Mechanisms governing inflammasome activation, assembly and pyroptosis induction. Int. Immunol. 29, 201–210 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Man, S. M. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nat. Rev. Gastroenterol. Hepatol. 15, 721–737 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gultekin, Y., Eren, E. & Ozoren, N. Overexpressed NLRC3 acts as an anti-inflammatory cytosolic protein. J. Innate Immun. 7, 25–36 (2015).

    PubMed  Google Scholar 

  6. Davis, B. K. et al. Cutting edge: NLRC5-dependent activation of the inflammasome. J. Immunol. 186, 1333–1337 (2011).

    CAS  PubMed  Google Scholar 

  7. Man, S. M., Karki, R. & Kanneganti, T. D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev. 277, 61–75 (2017). This review provides an overview on the functions and mechanisms of inflammatory caspases and pyroptosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Karki, R., Man, S. M. & Kanneganti, T. D. Inflammasomes and cancer. Cancer Immunol. Res. 5, 94–99 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Evavold, C. L. et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44 (2018). This study demonstrates that GSDMD facilitates active secretion of IL-1 family cytokines from live cells independently of its role as the effector of pyroptosis.

    CAS  PubMed  Google Scholar 

  11. Monteleone, M. et al. Interleukin-1beta maturation triggers its relocation to the plasma membrane for gasdermin-D-dependent and -independent secretion. Cell Rep. 24, 1425–1433 (2018).

    CAS  PubMed  Google Scholar 

  12. Semino, C., Carta, S., Gattorno, M., Sitia, R. & Rubartelli, A. Progressive waves of IL-1beta release by primary human monocytes via sequential activation of vesicular and gasdermin D-mediated secretory pathways. Cell Death Dis. 9, 1088 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Knodler, L. A. et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16, 249–256 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Levinsohn, J. L. et al. Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLOS Pathog. 8, e1002638 (2012).

    PubMed  PubMed Central  Google Scholar 

  15. Chavarria-Smith, J. & Vance, R. E. The NLRP1 inflammasomes. Immunol. Rev. 265, 22–34 (2015).

    CAS  PubMed  Google Scholar 

  16. He, Y., Zeng, M. Y., Yang, D., Motro, B. & Nunez, G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530, 354–357 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi, H. et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat. Immunol. 17, 250–258 (2016).

    CAS  PubMed  Google Scholar 

  18. Malireddi, R. K. S. et al. TAK1 restricts spontaneous NLRP3 activation and cell death to control myeloid proliferation. J. Exp. Med. 215, 1023–1034 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuriakose, T. et al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci. Immunol. 1, aag2045 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. Liston, A. & Masters, S. L. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat. Rev. Immunol. 17, 208–214 (2017). This article provides a concept of how inflammasomes sense changes in cellular homeostasis.

    CAS  PubMed  Google Scholar 

  21. Xu, H. et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237–241 (2014).

    CAS  PubMed  Google Scholar 

  22. Park, Y. H., Wood, G., Kastner, D. L. & Chae, J. J. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat. Immunol. 17, 914–921 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    CAS  PubMed  Google Scholar 

  24. Ross, C., Chan, A. H., Von Pein, J., Boucher, D. & Schroder, K. Dimerization and auto-processing induce caspase-11 protease activation within the non-canonical inflammasome. Life Sci. Alliance 1, e201800237 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. Fernandes-Alnemri, T., Yu, J. W., Datta, P., Wu, J. & Alnemri, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kortmann, J., Brubaker, S. W. & Monack, D. M. Cutting edge: inflammasome activation in primary human macrophages is dependent on flagellin. J. Immunol. 195, 815–819 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Reyes Ruiz, V. M. et al. Broad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome. Proc. Natl Acad. Sci. USA 114, 13242–13247 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao, Y. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596–600 (2011).

    CAS  PubMed  Google Scholar 

  30. Karki, R. et al. IRF8 regulates transcription of Naips for NLRC4 inflammasome activation. Cell 173, 920–933 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Deswaerte, V. et al. Inflammasome adaptor ASC suppresses apoptosis of gastric cancer cells by an IL18-mediated inflammation-independent mechanism. Cancer Res. 78, 1293–1307 (2018).

    CAS  PubMed  Google Scholar 

  33. Tu, S. et al. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14, 408–419 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dagenais, M. et al. The Interleukin (IL)-1R1 pathway is a critical negative regulator of PyMT-mediated mammary tumorigenesis and pulmonary metastasis. Oncoimmunology 6, e1287247 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Perez-Yepez, E. A., Ayala-Sumuano, J. T., Lezama, R. & Meza, I. A novel beta-catenin signaling pathway activated by IL-1beta leads to the onset of epithelial-mesenchymal transition in breast cancer cells. Cancer Lett. 354, 164–171 (2014).

    CAS  PubMed  Google Scholar 

  36. Ikuta, T. et al. ASC-associated inflammation promotes cecal tumorigenesis in aryl hydrocarbon receptor-deficient mice. Carcinogenesis 34, 1620–1627 (2013).

    CAS  PubMed  Google Scholar 

  37. Liu, W. et al. Dual role of apoptosis-associated speck-like protein containing a CARD (ASC) in tumorigenesis of human melanoma. J. Invest. Dermatol. 133, 518–527 (2013).

    CAS  PubMed  Google Scholar 

  38. Farshchian, M. et al. Tumor cell-specific AIM2 regulates growth and invasion of cutaneous squamous cell carcinoma. Oncotarget 8, 45825–45836 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Gao, J. et al. Downregulation of GSDMD attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in nonsmall cell lung cancer. Oncol. Rep. 40, 1971–1984 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Terme, M. et al. IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res. 71, 5393–5399 (2011).

    CAS  PubMed  Google Scholar 

  42. Kang, J. S. et al. Interleukin-18 increases metastasis and immune escape of stomach cancer via the downregulation of CD70 and maintenance of CD44. Carcinogenesis 30, 1987–1996 (2009).

    CAS  PubMed  Google Scholar 

  43. Marvel, D. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J. Clin. Invest. 125, 3356–3364 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Song, X. et al. CD11b + /Gr-1 + immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells. J. Immunol. 175, 8200–8208 (2005).

    CAS  PubMed  Google Scholar 

  45. Bunt, S. K. et al. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 67, 10019–10026 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. van Deventer, H. W. et al. The inflammasome component NLRP3 impairs antitumor vaccine by enhancing the accumulation of tumor-associated myeloid-derived suppressor cells. Cancer Res. 70, 10161–10169 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. Daley, D. et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J. Exp. Med. 214, 1711–1724 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Voigt, C. et al. Cancer cells induce interleukin-22 production from memory CD4( + ) T cells via interleukin-1 to promote tumor growth. Proc. Natl Acad. Sci. USA 114, 12994–12999 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sorrentino, R. et al. Human lung cancer-derived immunosuppressive plasmacytoid dendritic cells release IL-1alpha in an AIM2 inflammasome-dependent manner. Am. J. Pathol. 185, 3115–3124 (2015).

    CAS  PubMed  Google Scholar 

  50. Li, C. et al. PINK1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated immunometabolism. Dev. Cell 46, 441–455 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nakamura, K. et al. Dysregulated IL-18 is a key driver of immunosuppression and a possible therapeutic target in the multiple myeloma microenvironment. Cancer Cell 33, 634–648 (2018).

    CAS  PubMed  Google Scholar 

  52. McMahon, G. VEGF receptor signaling in tumor angiogenesis. Oncologist 5 (Suppl. 1), 3–10 (2000).

    CAS  PubMed  Google Scholar 

  53. Saijo, Y. et al. Proinflammatory cytokine IL-1 beta promotes tumor growth of Lewis lung carcinoma by induction of angiogenic factors: in vivo analysis of tumor-stromal interaction. J. Immunol. 169, 469–475 (2002).

    CAS  PubMed  Google Scholar 

  54. Jung, Y. J., Isaacs, J. S., Lee, S., Trepel, J. & Neckers, L. IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J. 17, 2115–2117 (2003).

    CAS  PubMed  Google Scholar 

  55. Valastyan, S. & Weinberg, R. A. Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Vidal-Vanaclocha, F. et al. IL-18 regulates IL-1beta-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. Proc. Natl Acad. Sci. USA 97, 734–739 (2000). This article shows that IL-18 contributes to hepatic metastasis by increasing VCAM1 expression in HSECs.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Voronov, E. et al. IL-1 is required for tumor invasiveness and angiogenesis. Proc. Natl Acad. Sci. USA 100, 2645–2650 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Vidal-Vanaclocha, F., Amezaga, C., Asumendi, A., Kaplanski, G. & Dinarello, C. A. Interleukin-1 receptor blockade reduces the number and size of murine B16 melanoma hepatic metastases. Cancer Res. 54, 2667–2672 (1994).

    CAS  PubMed  Google Scholar 

  60. Valcarcel, M., Carrascal, T., Crende, O. & Vidal-Vanaclocha, F. IL-18 regulates melanoma VLA-4 integrin activation through a Hierarchized sequence of inflammatory factors. J. Invest. Dermatol. 134, 470–480 (2014).

    CAS  PubMed  Google Scholar 

  61. Carrascal, M. T. et al. Interleukin-18 binding protein reduces b16 melanoma hepatic metastasis by neutralizing adhesiveness and growth factors of sinusoidal endothelium. Cancer Res. 63, 491–497 (2003).

    CAS  PubMed  Google Scholar 

  62. Dupaul-Chicoine, J. et al. The Nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity. Immunity 43, 751–763 (2015). This study elegantly demonstrates that IL-18 production as a result of NLRP3 activation in the immune cells contributes to maturation of hepatic NK cells, surface expression of the death ligand FASL and capacity to kill FASL-sensitive tumours.

    CAS  PubMed  Google Scholar 

  63. Deng, Q. et al. NLRP3 inflammasomes in macrophages drive colorectal cancer metastasis to the liver. Cancer Lett. 442, 21–30 (2018).

    PubMed  Google Scholar 

  64. Guo, B., Fu, S., Zhang, J., Liu, B. & Li, Z. Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci. Rep. 6, 36107 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. Chow, M. T. et al. NLRP3 suppresses NK cell-mediated responses to carcinogen-induced tumors and metastases. Cancer Res. 72, 5721–5732 (2012).

    CAS  PubMed  Google Scholar 

  66. Heerboth, S. et al. EMT and tumor metastasis. Clin. Transl Med. 4, 6 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. Fu, X. T. et al. Macrophage-secreted IL-8 induces epithelial-mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway. Int. J. Oncol. 46, 587–596 (2015).

    CAS  PubMed  Google Scholar 

  68. Wang, H. et al. NLRP3 promotes tumor growth and metastasis in human oral squamous cell carcinoma. BMC Cancer 18, 500 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. St John, M. A. et al. Proinflammatory mediators upregulate snail in head and neck squamous cell carcinoma. Clin. Cancer Res. 15, 6018–6027 (2009).

    Google Scholar 

  70. Jee, Y. S., Jang, T. J. & Jung, K. H. Prostaglandin E(2) and interleukin-1beta reduce E-cadherin expression by enhancing snail expression in gastric cancer cells. J. Korean Med. Sci. 27, 987–992 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Duffy, M. J., Maguire, T. M., Hill, A., McDermott, E. & O’Higgins, N. Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res. 2, 252–257 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ma, L. et al. Epidermal growth factor (EGF) and interleukin (IL)-1beta synergistically promote ERK1/2-mediated invasive breast ductal cancer cell migration and invasion. Mol. Cancer 11, 79 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang, Y. et al. Interleukin-18 enhances breast cancer cell migration via down-regulation of claudin-12 and induction of the p38 MAPK pathway. Biochem. Biophys. Res. Commun. 459, 379–386 (2015).

    CAS  PubMed  Google Scholar 

  74. Wang, W. et al. Inflammasome-independent NLRP3 augments TGF-beta signaling in kidney epithelium. J. Immunol. 190, 1239–1249 (2013).

    CAS  PubMed  Google Scholar 

  75. Wang, H. et al. Inflammasome-independent NLRP3 is required for epithelial-mesenchymal transition in colon cancer cells. Exp. Cell Res. 342, 184–192 (2016).

    CAS  PubMed  Google Scholar 

  76. Williams, T. M. et al. The NLRP1 inflammasome attenuates colitis and colitis-associated tumorigenesis. J. Immunol. 194, 3369–3380 (2015).

    CAS  PubMed  Google Scholar 

  77. Allen, I. C. et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J. Exp. Med. 207, 1045–1056 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zaki, M. H., Vogel, P., Body-Malapel, M., Lamkanfi, M. & Kanneganti, T. D. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J. Immunol. 185, 4912–4920 (2010).

    CAS  PubMed  Google Scholar 

  79. Wilson, J. E. et al. Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat. Med. 21, 906–913 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Man, S. M. et al. Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell 162, 45–58 (2015). Irrespective of its role in inflammasome activation, this study identifies a role of AIM2 in suppressing AKT activation, thereby preventing excessive proliferation of stem cells in the colon.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hu, B. et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc. Natl Acad. Sci. USA 107, 21635–21640 (2010).

    PubMed  PubMed Central  Google Scholar 

  82. Hu, B. et al. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc. Natl Acad. Sci. USA 110, 9862–9867 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sharma, D. et al. Pyrin inflammasome regulates tight junction integrity to restrict colitis and tumorigenesis. Gastroenterology 154, 948–964 (2018).

    CAS  PubMed  Google Scholar 

  84. De Robertis, M. et al. The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies. J. Carcinog. 10, 9 (2011).

    PubMed  PubMed Central  Google Scholar 

  85. Zaki, M. H. et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32, 379–391 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Dupaul-Chicoine, J. et al. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity 32, 367–378 (2010).

    CAS  PubMed  Google Scholar 

  87. Salcedo, R. et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J. Exp. Med. 207, 1625–1636 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Takagi, H. et al. Contrasting action of IL-12 and IL-18 in the development of dextran sodium sulphate colitis in mice. Scand. J. Gastroenterol. 38, 837–844 (2003).

    CAS  PubMed  Google Scholar 

  89. Fabbi, M., Carbotti, G. & Ferrini, S. Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP. J. Leukoc. Biol. 97, 665–675 (2015).

    CAS  PubMed  Google Scholar 

  90. Nowarski, R. et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163, 1444–1456 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sivakumar, P. V. et al. Interleukin 18 is a primary mediator of the inflammation associated with dextran sulphate sodium induced colitis: blocking interleukin 18 attenuates intestinal damage. Gut 50, 812–820 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Siegmund, B. et al. Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-gamma and TNF-alpha production. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1264–R1273 (2001).

    CAS  PubMed  Google Scholar 

  93. Huber, S. et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491, 259–263 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Bauer, C. et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 59, 1192–1199 (2010).

    CAS  PubMed  Google Scholar 

  95. Du, Q. et al. Dietary cholesterol promotes AOM-induced colorectal cancer through activating the NLRP3 inflammasome. Biochem. Pharmacol. 105, 42–54 (2016).

    CAS  PubMed  Google Scholar 

  96. Yao, X. et al. Remodelling of the gut microbiota by hyperactive NLRP3 induces regulatory T cells to maintain homeostasis. Nat. Commun. 8, 1896 (2017).

    PubMed  PubMed Central  Google Scholar 

  97. Spalinger, M. R. et al. PTPN2 regulates inflammasome activation and controls onset of intestinal inflammation and colon cancer. Cell Rep. 22, 1835–1848 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Dmitrieva-Posocco, O. et al. Cell-type-specific responses to interleukin-1 control microbial invasion and tumor-elicited inflammation in colorectal cancer. Immunity 50, 166–180 (2019). Using conditional gene deletion approaches in a model of CRC, this study demonstrates opposing roles of IL-1R signalling on different cell types.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Drexler, S. K. et al. Tissue-specific opposing functions of the inflammasome adaptor ASC in the regulation of epithelial skin carcinogenesis. Proc. Natl Acad. Sci. USA 109, 18384–18389 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Janowski, A. M. et al. NLRC4 suppresses melanoma tumor progression independently of inflammasome activation. J. Clin. Invest. 126, 3917–3928 (2016).

    PubMed  PubMed Central  Google Scholar 

  101. Allam, R. et al. Epithelial NAIPs protect against colonic tumorigenesis. J. Exp. Med. 212, 369–383 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Garaude, J., Kent, A., van Rooijen, N. & Blander, J. M. Simultaneous targeting of toll- and nod-like receptors induces effective tumor-specific immune responses. Sci. Transl Med. 4, 120ra16 (2012).

    PubMed  Google Scholar 

  103. Chen, J., Wang, Z. & Yu, S. AIM2 regulates viability and apoptosis in human colorectal cancer cells via the PI3K/Akt pathway. Onco Targets Ther. 10, 811–817 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Karki, R. et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature 540, 583–587 (2016). The tumour-suppressive effect of NLRC3 is associated with its inhibitory effect on the mTOR signalling pathway to suppress cellular proliferation and stem cell-derived organoid formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Man, S. M., Karki, R. & Kanneganti, T. D. AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity. Eur. J. Immunol. 46, 269–280 (2016).

    CAS  PubMed  Google Scholar 

  106. Hu, B. et al. The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science 354, 765–768 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, I. F. et al. AIM2 suppresses human breast cancer cell proliferation in vitro and mammary tumor growth in a mouse model. Mol. Cancer Ther. 5, 1–7 (2006).

    CAS  PubMed  Google Scholar 

  108. Liu, Z. Y., Yi, J. & Liu, F. E. The molecular mechanism of breast cancer cell apoptosis induction by absent in melanoma (AIM2). Int. J. Clin. Exp. Med. 8, 14750–14758 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Wlodarska, M. et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156, 1045–1059 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hara, H. et al. The NLRP6 inflammasome recognizes lipoteichoic acid and regulates gram-positive pathogen infection. Cell 175, 1651–1664 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Vladimer, G. I. et al. The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37, 96–107 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Birchenough, G. M., Nystrom, E. E., Johansson, M. E. & Hansson, G. C. A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science 352, 1535–1542 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Allen, I. C. et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity 36, 742–754 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zaki, M. H. et al. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 20, 649–660 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Brennan, C. A. & Garrett, W. S. Gut microbiota, inflammation, and colorectal cancer. Annu. Rev. Microbiol. 70, 395–411 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zackular, J. P. et al. The gut microbiome modulates colon tumorigenesis. mBio 4, e00692–13 (2013).

    PubMed  PubMed Central  Google Scholar 

  118. Hirota, S. A. et al. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm. Bowel Dis. 17, 1359–1372 (2011).

    PubMed  Google Scholar 

  119. Ratsimandresy, R. A., Indramohan, M., Dorfleutner, A. & Stehlik, C. The AIM2 inflammasome is a central regulator of intestinal homeostasis through the IL-18/IL-22/STAT3 pathway. Cell. Mol. Immunol. 14, 127–142 (2017).

    CAS  PubMed  Google Scholar 

  120. Chen, L. et al. NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nat. Immunol. 18, 541–551 (2017).

    PubMed  PubMed Central  Google Scholar 

  121. Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Pierantonelli, I. et al. Lack of NLRP3-inflammasome leads to gut-liver axis derangement, gut dysbiosis and a worsened phenotype in a mouse model of NAFLD. Sci. Rep. 7, 12200 (2017).

    PubMed  PubMed Central  Google Scholar 

  123. Mamantopoulos, M. et al. Nlrp6- and ASC-dependent inflammasomes do not shape the commensal gut microbiota composition. Immunity 47, 339–348 (2017). This study concludes that NLRP6 and ASC-dependent inflammasomes do not contribute in shaping the commensal gut microbiota and highlights the necessity of littermate-controlled experiments to study gene functions in the gut.

    CAS  PubMed  Google Scholar 

  124. Lemire, P. et al. The NLR protein NLRP6 does not impact gut microbiota composition. Cell Rep. 21, 3653–3661 (2017).

    CAS  PubMed  Google Scholar 

  125. Lukens, J. R. et al. Dietary modulation of the microbiome affects autoinflammatory disease. Nature 516, 246–249 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhao, S. et al. Deoxycholic acid triggers NLRP3 inflammasome activation and aggravates DSS-induced colitis in mice. Front. Immunol. 7, 536 (2016).

    PubMed  PubMed Central  Google Scholar 

  127. Macia, L. et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734 (2015).

    CAS  PubMed  Google Scholar 

  128. Yan, Y. et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38, 1154–1163 (2013).

    CAS  PubMed  Google Scholar 

  129. Kolb, R. et al. Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nat. Commun. 7, 13007 (2016). This study demonstrates that IL-1β production as a result of NLRC4 inflammasome activation in immune cells of the TME of obese mice acts on adipocytes to promote VEGF production and angiogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Villani, A. C. et al. Common variants in the NLRP3 region contribute to Crohn’s disease susceptibility. Nat. Genet. 41, 71–76 (2009).

    CAS  PubMed  Google Scholar 

  131. Schoultz, I. et al. Combined polymorphisms in genes encoding the inflammasome components NALP3 and CARD8 confer susceptibility to Crohn’s disease in Swedish men. Am. J. Gastroenterol. 104, 1180–1188 (2009).

    CAS  PubMed  Google Scholar 

  132. Ungerback, J. et al. Genetic variation and alterations of genes involved in NFkappaB/TNFAIP3- and NLRP3-inflammasome signaling affect susceptibility and outcome of colorectal cancer. Carcinogenesis 33, 2126–2134 (2012).

    PubMed  Google Scholar 

  133. Verma, D. et al. Inflammasome polymorphisms confer susceptibility to sporadic malignant melanoma. Pigment Cell. Melanoma Res. 25, 506–513 (2012).

    CAS  PubMed  Google Scholar 

  134. Castano-Rodriguez, N., Kaakoush, N. O., Goh, K. L., Fock, K. M. & Mitchell, H. M. The NOD-like receptor signalling pathway in Helicobacter pylori infection and related gastric cancer: a case-control study and gene expression analyses. PLOS ONE 9, e98899 (2014).

    PubMed  PubMed Central  Google Scholar 

  135. Zhong, F. L. et al. Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation. Cell 167, 187–202 (2016).

    CAS  PubMed  Google Scholar 

  136. Borelli, V., Moura, R. R., Trevisan, E. & Crovella, S. NLRP1 and NLRP3 polymorphisms in mesothelioma patients and asbestos exposed individuals a population-based autopsy study from North East Italy. Infect. Agent Cancer 10, 26 (2015).

    PubMed  PubMed Central  Google Scholar 

  137. Girardelli, M. et al. NLRP1 polymorphisms in patients with asbestos-associated mesothelioma. Infect. Agent Cancer 7, 25 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Mori, Y. et al. Instabilotyping: comprehensive identification of frameshift mutations caused by coding region microsatellite instability. Cancer Res. 61, 6046–6049 (2001).

    CAS  PubMed  Google Scholar 

  139. Schulmann, K. et al. HNPCC-associated small bowel cancer: clinical and molecular characteristics. Gastroenterology 128, 590–599 (2005).

    CAS  PubMed  Google Scholar 

  140. Woerner, S. M. et al. Pathogenesis of DNA repair-deficient cancers: a statistical meta-analysis of putative Real Common Target genes. Oncogene 22, 2226–2235 (2003).

    CAS  PubMed  Google Scholar 

  141. Brenner, R. et al. Familial mediterranean fever and incidence of cancer: an analysis of 8,534 Israeli patients with 258,803 person-years. Arthritis Rheumatol. 70, 127–133 (2018).

    PubMed  Google Scholar 

  142. Chen, L. C. et al. Tumour inflammasome-derived IL-1beta recruits neutrophils and improves local recurrence-free survival in EBV-induced nasopharyngeal carcinoma. EMBO Mol. Med. 4, 1276–1293 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Kong, H. et al. Differential expression of inflammasomes in lung cancer cell lines and tissues. Tumour Biol. 36, 7501–7513 (2015).

    CAS  PubMed  Google Scholar 

  144. Wu, C. S. et al. ASC contributes to metastasis of oral cavity squamous cell carcinoma. Oncotarget 7, 50074–50085 (2016).

    PubMed  PubMed Central  Google Scholar 

  145. Baldini, C., Santini, E., Rossi, C., Donati, V. & Solini, A. The P2X7 receptor-NLRP3 inflammasome complex predicts the development of non-Hodgkin’s lymphoma in Sjogren’s syndrome: a prospective, observational, single-centre study. J. Intern. Med. 282, 175–186 (2017).

    CAS  PubMed  Google Scholar 

  146. Paugh, S. W. et al. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nat. Genet. 47, 607–614 (2015). The findings from this study establish a regulatory mechanism by which NLRP3-mediated caspase 1 activation modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Poli, G. et al. Expression of inflammasome-related genes in bladder cancer and their association with cytokeratin 20 messenger RNA. Urol. Oncol. 33, 505 (2015).

    PubMed  Google Scholar 

  148. Karan, D., Tawfik, O. & Dubey, S. Expression analysis of inflammasome sensors and implication of NLRP12 inflammasome in prostate cancer. Sci. Rep. 7, 4378 (2017).

    PubMed  PubMed Central  Google Scholar 

  149. Huang, T. et al. G9A promotes tumor cell growth and invasion by silencing CASP1 in non-small-cell lung cancer cells. Cell Death Dis. 8, e2726 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Dihlmann, S. et al. Lack of absent in melanoma 2 (AIM2) expression in tumor cells is closely associated with poor survival in colorectal cancer patients. Int. J. Cancer 135, 2387–2396 (2014).

    CAS  PubMed  Google Scholar 

  151. Liu, R. et al. Expression profile of innate immune receptors, NLRs and AIM2, in human colorectal cancer: correlation with cancer stages and inflammasome components. Oncotarget 6, 33456–33469 (2015).

    PubMed  PubMed Central  Google Scholar 

  152. Wei, Q. et al. Deregulation of the NLRP3 inflammasome in hepatic parenchymal cells during liver cancer progression. Lab. Invest. 94, 52–62 (2014).

    CAS  PubMed  Google Scholar 

  153. Yoshihama, S. et al. NLRC5/MHC class I transactivator is a target for immune evasion in cancer. Proc. Natl Acad. Sci. USA 113, 5999–6004 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Locher, C. et al. Desirable cell death during anticancer chemotherapy. Ann. NY Acad. Sci. 1209, 99–108 (2010).

    CAS  PubMed  Google Scholar 

  155. Casares, N. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202, 1691–1701 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009). Using tumour transplantation models, this study demonstrates that chemotherapy-mediated DAMPs released from dying tumour cells activate the NLRP3 inflammasome in DCs to regulate the adaptive immune cell repertoire, resulting in enhanced T cell-mediated tumour cell death.

    CAS  PubMed  Google Scholar 

  157. Bruchard, M. et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat. Med. 19, 57–64 (2013).

    CAS  PubMed  Google Scholar 

  158. Feng, X. et al. The role of NLRP3 inflammasome in 5-fluorouracil resistance of oral squamous cell carcinoma. J. Exp. Clin. Cancer Res. 36, 81 (2017).

    PubMed  PubMed Central  Google Scholar 

  159. Su, S. et al. Immune checkpoint inhibition overcomes ADCP-induced immunosuppression by macrophages. Cell 175, 442–457 (2018).

    CAS  PubMed  Google Scholar 

  160. Mattarollo, S. R. et al. Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res. 71, 4809–4820 (2011).

    CAS  PubMed  Google Scholar 

  161. Westbom, C. et al. Inflammasome modulation by chemotherapeutics in malignant mesothelioma. PLOS ONE 10, e0145404 (2015).

    PubMed  PubMed Central  Google Scholar 

  162. Yao, L., Zhang, Y., Chen, K., Hu, X. & Xu, L. X. Discovery of IL-18 as a novel secreted protein contributing to doxorubicin resistance by comparative secretome analysis of MCF-7 and MCF-7/Dox. PLOS ONE 6, e24684 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Chmielewski, M. & Abken, H. CAR T cells releasing IL-18 convert to T-Bet(high) FoxO1(low) effectors that exhibit augmented activity against advanced solid tumors. Cell Rep. 21, 3205–3219 (2017).

    CAS  PubMed  Google Scholar 

  164. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

    CAS  PubMed  Google Scholar 

  165. Baldwin, A. G., Brough, D. & Freeman, S. Inhibiting the inflammasome: a chemical perspective. J. Med. Chem. 59, 1691–1710 (2016).

    CAS  PubMed  Google Scholar 

  166. Mangan, M. S. J. et al. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov. 17, 588–606 (2018). This review highlights the evolving landscape of NLRP3 modulators and discusses opportunities for pharmacologically targeting NLRP3 with novel small molecules.

    CAS  PubMed  Google Scholar 

  167. Lust, J. A. et al. Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin 1{beta}-induced interleukin 6 production and the myeloma proliferative component. Mayo Clin. Proc. 84, 114–122 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Lust, J. A. et al. Reduction in C-reactive protein indicates successful targeting of the IL-1/IL-6 axis resulting in improved survival in early stage multiple myeloma. Am. J. Hematol. 91, 571–574 (2016).

    CAS  PubMed  Google Scholar 

  169. Gross, O. et al. Inflammasome activators induce interleukin-1alpha secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36, 388–400 (2012).

    CAS  PubMed  Google Scholar 

  170. Hickish, T. et al. MABp1 as a novel antibody treatment for advanced colorectal cancer: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 18, 192–201 (2017).

    CAS  PubMed  Google Scholar 

  171. Ridker, P. M. et al. Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017). An additional finding of the CANTOS, where administration of canakinumab reduced lung cancer incidence and mortality, shed light on IL-1β as a potential therapeutic target in lung cancer.

    CAS  PubMed  Google Scholar 

  172. Isambert, N. et al. Fluorouracil and bevacizumab plus anakinra for patients with metastatic colorectal cancer refractory to standard therapies (IRAFU): a single-arm phase 2 study. Oncoimmunology 7, e1474319 (2018).

    PubMed  PubMed Central  Google Scholar 

  173. Wang, Y. et al. Activation of NLRP3 inflammasome enhances the proliferation and migration of A549 lung cancer cells. Oncol. Rep. 35, 2053–2064 (2016).

    CAS  PubMed  Google Scholar 

  174. Cao, R., Farnebo, J., Kurimoto, M. & Cao, Y. Interleukin-18 acts as an angiogenesis and tumor suppressor. FASEB J. 13, 2195–2202 (1999).

    CAS  PubMed  Google Scholar 

  175. Hitzler, I. et al. Caspase-1 has both proinflammatory and regulatory properties in Helicobacter infections, which are differentially mediated by its substrates IL-1beta and IL-18. J. Immunol. 188, 3594–3602 (2012).

    CAS  PubMed  Google Scholar 

  176. Wang, W. J. et al. Downregulation of gasdermin D promotes gastric cancer proliferation by regulating cell cycle-related proteins. J. Dig. Dis. 19, 74–83 (2018).

    CAS  PubMed  Google Scholar 

  177. Chang, C. Y. et al. Intratumoral delivery of IL-18 naked DNA induces T cell activation and Th1 response in a mouse hepatic cancer model. BMC Cancer 7, 87 (2007).

    PubMed  PubMed Central  Google Scholar 

  178. Martinez-Cardona, C. et al. AIM2 deficiency reduces the development of hepatocellular carcinoma in mice. Int. J. Cancer 143, 2997–3007 (2018).

    CAS  PubMed  Google Scholar 

  179. Chen, S. L. et al. HBx-mediated decrease of AIM2 contributes to hepatocellular carcinoma metastasis. Mol. Oncol. 11, 1225–1240 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Normand, S. et al. Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc. Natl Acad. Sci. USA 108, 9601–9606 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Chen, G. Y., Liu, M., Wang, F., Bertin, J. & Nunez, G. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J. Immunol. 186, 7187–7194 (2011).

    CAS  PubMed  Google Scholar 

  182. Blazejewski, A. J. et al. Microbiota normalization reveals that canonical caspase-1 activation exacerbates chemically induced intestinal inflammation. Cell Rep. 19, 2319–2330 (2017).

    CAS  PubMed  Google Scholar 

  183. Wang, Y. et al. Neutrophil infiltration favors colitis-associated tumorigenesis by activating the interleukin-1 (IL-1)/IL-6 axis. Mucosal Immunol. 7, 1106–1115 (2014).

    CAS  PubMed  Google Scholar 

  184. Ning, C. et al. Complement activation promotes colitis-associated carcinogenesis through activating intestinal IL-1beta/IL-17A axis. Mucosal Immunol. 8, 1275–1284 (2015).

    CAS  PubMed  Google Scholar 

  185. Zhu, Y., Zhu, M. & Lance, P. IL1beta-mediated Stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells. Exp. Cell Res. 318, 2520–2530 (2012).

    CAS  PubMed  Google Scholar 

  186. Liu, Q. et al. Interleukin-1beta promotes skeletal colonization and progression of metastatic prostate cancer cells with neuroendocrine features. Cancer Res. 73, 3297–3305 (2013).

    CAS  PubMed  Google Scholar 

  187. Tsai, C. Y., Lee, T. S., Kou, Y. R. & Wu, Y. L. Glucosamine inhibits IL-1beta-mediated IL-8 production in prostate cancer cells by MAPK attenuation. J. Cell. Biochem. 108, 489–498 (2009).

    CAS  PubMed  Google Scholar 

  188. Xu, G., Guo, Y., Seng, Z., Cui, G. & Qu, J. Bone marrow-derived mesenchymal stem cells co-expressing interleukin-18 and interferon-beta exhibit potent antitumor effect against intracranial glioma in rats. Oncol. Rep. 34, 1915–1922 (2015).

    CAS  PubMed  Google Scholar 

  189. Xu, G. et al. Adenoviral-mediated interleukin-18 expression in mesenchymal stem cells effectively suppresses the growth of glioma in rats. Cell Biol. Int. 33, 466–474 (2009).

    CAS  PubMed  Google Scholar 

  190. Zhang, Y., Wang, C., Zhang, Y. & Sun, M. C6 glioma cells retrovirally engineered to express IL-18 and Fas exert FasL-dependent cytotoxicity against glioma formation. Biochem. Biophys. Res. Commun. 325, 1240–1245 (2004).

    CAS  PubMed  Google Scholar 

  191. Kikuchi, T. et al. Antitumor activity of interleukin-18 on mouse glioma cells. J. Immunother. 23, 184–189 (2000).

    CAS  PubMed  Google Scholar 

  192. Li, L. & Liu, Y. Aging-related gene signature regulated by Nlrp3 predicts glioma progression. Am. J. Cancer Res. 5, 442–449 (2015).

    CAS  PubMed  Google Scholar 

  193. Fathima Hurmath, K., Ramaswamy, P. & Nandakumar, D. N. IL-1beta microenvironment promotes proliferation, migration, and invasion of human glioma cells. Cell Biol. Int. 38, 1415–1422 (2014).

    CAS  PubMed  Google Scholar 

  194. Sun, W., Depping, R. & Jelkmann, W. Interleukin-1beta promotes hypoxia-induced apoptosis of glioblastoma cells by inhibiting hypoxia-inducible factor-1 mediated adrenomedullin production. Cell Death Dis. 5, e1020 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Krelin, Y. et al. Interleukin-1beta-driven inflammation promotes the development and invasiveness of chemical carcinogen-induced tumors. Cancer Res. 67, 1062–1071 (2007).

    CAS  PubMed  Google Scholar 

  196. Zhai, Z. et al. NLRP1 promotes tumor growth by enhancing inflammasome activation and suppressing apoptosis in metastatic melanoma. Oncogene 36, 3820–3830 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Chow, M. T., Tschopp, J., Moller, A. & Smyth, M. J. NLRP3 promotes inflammation-induced skin cancer but is dispensable for asbestos-induced mesothelioma. Immunol. Cell Biol. 90, 983–986 (2012).

    CAS  PubMed  Google Scholar 

  198. Zeng, Q. et al. Caspase-1 from human myeloid-derived suppressor cells can promote T cell-independent tumor proliferation. Cancer Immunol. Res. 6, 566–577 (2018).

    CAS  PubMed  Google Scholar 

  199. Huang, C. F. et al. NLRP3 inflammasome activation promotes inflammation-induced carcinogenesis in head and neck squamous cell carcinoma. J. Exp. Clin. Cancer Res. 36, 116 (2017).

    PubMed  PubMed Central  Google Scholar 

  200. Lee, C. H. et al. IL-1beta promotes malignant transformation and tumor aggressiveness in oral cancer. J. Cell. Physiol. 230, 875–884 (2015).

    CAS  PubMed  Google Scholar 

  201. Zhao, X. et al. NLRP3 inflammasome activation plays a carcinogenic role through effector cytokine IL-18 in lymphoma. Oncotarget 8, 108571–108583 (2017).

    PubMed  PubMed Central  Google Scholar 

  202. Kadariya, Y. et al. Inflammation-related IL1beta/IL1R signaling promotes the development of asbestos-induced malignant mesothelioma. Cancer Prev. Res. 9, 406–414 (2016).

    CAS  Google Scholar 

  203. Wu, T. C. et al. IL1 receptor antagonist controls transcriptional signature of inflammation in patients with metastatic breast cancer. Cancer Res. 78, 5243–5258 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01802970 (2016).

  205. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02090101 (2018).

  206. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00635154 (2018).

  207. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02900664 (2018).

  208. Palumbo, A. et al. Thalidomide for treatment of multiple myeloma: 10 years later. Blood 111, 3968–3977 (2008).

    CAS  PubMed  Google Scholar 

  209. Zitvogel, L., Kepp, O., Galluzzi, L. & Kroemer, G. Inflammasomes in carcinogenesis and anticancer immune responses. Nat. Immunol. 13, 343–351 (2012).

    CAS  PubMed  Google Scholar 

  210. Chen, L. et al. Blockage of the NLRP3 inflammasome by MCC950 improves anti-tumor immune responses in head and neck squamous cell carcinoma. Cell. Mol. Life Sci. 75, 2045–2058 (2018).

    CAS  PubMed  Google Scholar 

  211. Lamkanfi, M. et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J. Cell Biol. 187, 61–70 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Ahn, H. et al. Methylene blue inhibits NLRP3, NLRC4, AIM2, and non-canonical inflammasome activation. Sci. Rep. 7, 12409 (2017).

    PubMed  PubMed Central  Google Scholar 

  213. Jiang, H. et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med. 214, 3219–3238 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research studies from our laboratory are supported by the US National Institutes of Health (AR056296, CA163507, AI124346 and AI101935 to T.-D.K.) and the American Lebanese Syrian Associated Charities (to T.-D.K.). The authors apologize to colleagues whose work was not cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to researching data for the article and writing and editing the article.

Corresponding author

Correspondence to Thirumala-Devi Kanneganti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Gut microbiota

The ecological community of microorganisms harboured in the gastrointestinal tract.

Pyroptosis

An inflammatory and lytic form of cell death mediated by inflammatory caspases.

gp130 F/F mice

A mouse model that is generated using a phenylalanine knock-in substitution at tyrosine 757 in the cytoplasmic domain of the interleukin-6 (IL-6) receptor β-chain (gp130). The mice rapidly develop tumours in the epithelium of the glandular stomach and highlight a key role for signal transducer and activator of transcription 3 (STAT3) signalling in gastric tumorigenesis.

Tumour microenvironment

(TME). The cellular and molecular environment where tumour cells interact with infiltrating immune cells, fibroblasts, blood vessels and extracellular matrix.

Tumour-associated macrophages

(TAMs). A class of mostly abundant immune cells present in the tumour microenvironment. They have a tumour-promoting phenotype via modulating tumour cell proliferation, tumour angiogenesis, invasion and metastasis.

Alarmins

Damage-associated molecular patterns such as high mobility group box 1 (HMGB1) or interleukin-1α (IL-1α) released by damaged or necrotic cells.

Plasmacytoid dendritic cells

(pDCs). A type I interferon-producing subset of dendritic cells with antigen-presenting potential.

Hepatic sinusoidal endothelial cells

(HSECs). A special type of endothelial cells that represent the interface between blood cells on the one side and hepatocytes and hepatic stellate cells on the other side.

Epithelial-to-mesenchymal transition

(EMT). A process by which epithelial cells lose their polarity and cell–cell adhesion properties and acquire mesenchymal fibroblast-like properties.

Matrix metalloproteinases

(MMPs.) A family of endopeptidases capable of degrading extracellular matrix components, influencing multiple cellular processes such as migration and adhesion.

Azoxymethane

(AOM). A potent carcinogen that is used to induce colon carcinoma in mice and rats. It is metabolized to methylazoxymethanol in the liver and then reaches the colon via the bloodstream rather than the bile.

Mucin 2

(MUC2). A glycoprotein that is particularly prominent in the gut and is secreted from goblet cells in the epithelial lining into the lumen of the large intestine.

Nlrp3 R258W mice

Genetically modified mice carrying the R258W mutation in the Nlrp3 gene, which corresponds to the R260W mutation in the NLRP3 gene in humans. These mice develop severe cutaneous lesions, including erythema, scaling and thickening of both the epidermis and the dermis, symptoms that recapitulate urticaria-like skin lesions reported in patients with Muckle–Wells syndrome.

Deoxycholic acid

A bile acid that emulsifies and solubilizes dietary fats in the intestine.

Crohn’s disease

An inflammatory bowel disease that involves chronic inflammation of the digestive tract.

Familial Mediterranean fever

(FMF). Mutations in the gene encoding pyrin (MEFV) are associated with FMF, which is an autosomal recessive, autoinflammatory disorder characterized by episodic fever and neutrophil-mediated inflammation of serosal tissues.

Sjögren syndrome

An autoimmune disease that mostly affects the salivary and lacrimal glands, resulting in dry mouth and dry eyes.

Canakinumab Anti-inflammatory Thrombosis Outcomes Study

(CANTOS). A randomized, double-blinded, placebo-controlled trial to evaluate the effect of canakinumab, a human monoclonal antibody that selectively neutralizes interleukin-1β (IL-1β), in the prevention of recurrent vascular events in patients with previous myocardial infarction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karki, R., Kanneganti, TD. Diverging inflammasome signals in tumorigenesis and potential targeting. Nat Rev Cancer 19, 197–214 (2019). https://doi.org/10.1038/s41568-019-0123-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-019-0123-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing