Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases

Abstract

Endothelial cells and mesenchymal cells are two different cell types with distinct morphologies, phenotypes, functions, and gene profiles. Accumulating evidence, notably from lineage-tracing studies, indicates that the two cell types convert into each other during cardiovascular development and pathogenesis. During heart development, endothelial cells transdifferentiate into mesenchymal cells in the endocardial cushion through endothelial-to-mesenchymal transition (EndoMT), a process that is critical for the formation of cardiac valves. Studies have also reported that EndoMT contributes to the development of various cardiovascular diseases, including myocardial infarction, cardiac fibrosis, valve calcification, endocardial elastofibrosis, atherosclerosis, and pulmonary arterial hypertension. Conversely, cardiac fibroblasts can transdifferentiate into endothelial cells and contribute to neovascularization after cardiac injury. However, progress in genetic lineage tracing has challenged the role of EndoMT, or its reversed programme, in the development of cardiovascular diseases. In this Review, we discuss the caveats of using genetic lineage-tracing technology to investigate cell-lineage conversion; we also reassess the role of EndoMT in cardiovascular development and diseases and elaborate on the molecular signals that orchestrate EndoMT in pathophysiological processes. Understanding the role and mechanisms of EndoMT in diseases will unravel the therapeutic potential of targeting this process and will provide a new paradigm for the development of regenerative medicine to treat cardiovascular diseases.

Key points

  • Endothelial cells are converted to mesenchymal cells through endothelial-to-mesenchymal transition (EndoMT) during cardiovascular development.

  • EndoMT also has a critical role in the development of cardiovascular diseases, including cardiac valve diseases, tissue fibrosis, pulmonary arterial hypertension, and atherosclerosis.

  • The involvement of EndoMT in fibroblast contribution during cardiac fibrosis is an ongoing debate.

  • Lineage-tracing studies indicate that resident fibroblasts, rather than EndoMT, give rise to the majority of myofibroblasts after injury.

  • Pre-existing endothelial cells, but not mesenchymal-to-endothelial transition, are the main source that mediates neovascularization after cardiac injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic lineage tracing using Cre–loxP recombination.
Fig. 2: Endocardial-to-mesenchymal transition in the developing heart.
Fig. 3: Endocardial-to-mesenchymal transition during cardiac fibrosis.
Fig. 4: Cell-lineage conversion between endothelial and mesenchymal cells in cardiovascular diseases.
Fig. 5: Putative contribution of fibroblasts to endothelial cells via mesenchymal-to-endothelial transition in the adult heart.

Similar content being viewed by others

References

  1. Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011).

    Article  PubMed  CAS  Google Scholar 

  2. Zlokovic, B. V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).

    Article  PubMed  CAS  Google Scholar 

  3. Bearer, E. L. & Orci, L. Endothelial fenestral diaphragms: a quick-freeze, deep-etch study. J. Cell Biol. 100, 418–428 (1985).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Zhang, H. et al. Endocardium contributes to cardiac fat. Circ. Res. 118, 254–265 (2016).

    Article  PubMed  CAS  Google Scholar 

  5. Zhang, H. et al. Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. Circ. Res. 118, 1880–1893 (2016).

    Article  PubMed  CAS  Google Scholar 

  6. He, L. et al. BAF200 is required for heart morphogenesis and coronary artery development. PLoS ONE 9, e109493 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sheikh, A. Y. et al. In vivo genetic profiling and cellular localization of apelin reveals a hypoxia-sensitive, endothelial-centered pathway activated in ischemic heart failure. Am. J. Physiol. Heart Circ. Physiol. 294, H88–98 (2008).

    Article  PubMed  CAS  Google Scholar 

  8. von Gise, A. & Pu, W. T. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ. Res. 110, 1628–1645 (2012).

    Article  CAS  Google Scholar 

  9. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    Article  PubMed  CAS  Google Scholar 

  12. Guimarães-Camboa, N. & Evans, S. M. Are perivascular adipocyte progenitors mural cells or adventitial fibroblasts. Cell Stem Cell 20, 587–589 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Guimarães-Camboa, N. et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20, 345–359 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Vishvanath, L., Long, J. Z., Spiegelman, B. M. & Gupta, R. K. Do adipocytes emerge from mural progenitors. Cell Stem Cell 20, 585–586 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. Moore-Morris, T. et al. Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J. Clin. Invest. 124, 2921–2934 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Markwald, R. R., Krook, J. M., Kitten, G. T. & Runyan, R. B. Endocardial cushion tissue development: structural analyses on the attachment of extracellular matrix to migrating mesenchymal cell surfaces. Scan Electron. Microsc., 261–274 (1981).

  17. Runyan, R. B. & Markwald, R. R. Invasion of mesenchyme into three-dimensional collagen gels: a regional and temporal analysis of interaction in embryonic heart tissue. Dev. Biol. 95, 108–114 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. Eisenberg, L. M. & Markwald, R. R. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ. Res. 77, 1–6 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. Red-Horse, K., Ueno, H., Weissman, I. L. & Krasnow, M. A. Coronary arteries form by developmental reprogramming of venous cells. Nature 464, 549–553 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wu, B. et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 151, 1083–1096 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Tian, X. et al. De novo formation of a distinct coronary vascular population in neonatal heart. Science 345, 90–94 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Pérez-Pomares, J. M. & Muñoz-Chápuli, R. Epithelial-mesenchymal transitions: a mesodermal cell strategy for evolutive innovation in Metazoans. Anat. Rec. 268, 343–351 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. de la Pompa, J. L. Notch signaling in cardiac development and disease. Pediatr. Cardiol. 30, 643–650 (2009).

    Article  PubMed  Google Scholar 

  24. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  PubMed  CAS  Google Scholar 

  25. Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).

    Article  PubMed  CAS  Google Scholar 

  26. Miyake, T. & Kalluri, R. Cardiac biology: Cell plasticity helps hearts to repair. Nature 514, 575–576 (2014).

    Article  PubMed  CAS  Google Scholar 

  27. Dejana, E., Hirschi, K. K. & Simons, M. The molecular basis of endothelial cell plasticity. Nat. Commun. 8, 14361 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Cunha, S. I., Magnusson, P. U., Dejana, E. & Lampugnani, M. G. Deregulated TGF-β/BMP signaling in vascular malformations. Circ. Res. 121, 981–999 (2017).

    Article  PubMed  CAS  Google Scholar 

  29. Xiao, L. & Dudley, A. C. Fine-tuning vascular fate during endothelial-mesenchymal transition. J. Pathol. 241, 25–35 (2017).

    Article  PubMed  CAS  Google Scholar 

  30. Medici, D. & Kalluri, R. Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin. Cancer Biol. 22, 379–384 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Dejana, E., Tournier-Lasserve, E. & Weinstein, B. M. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev. Cell 16, 209–221 (2009).

    Article  PubMed  CAS  Google Scholar 

  32. Tomanek, R. J. Formation of the coronary vasculature during development. Angiogenesis 8, 273–284 (2005).

    Article  PubMed  Google Scholar 

  33. Zhang, H. et al. Genetic lineage tracing identifies endocardial origin of liver vasculature. Nat. Genet. 48, 537–543 (2016).

    Article  PubMed  CAS  Google Scholar 

  34. Acharya, A. et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development 139, 2139–2149 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Smith, C. L., Baek, S. T., Sung, C. Y. & Tallquist, M. D. Epicardial-derived cell epithelial to mesenchymal transition and fate specification require PDGF receptor signaling. Circ. Res. 108, e15–e26 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kim, J. E., Nakashima, K. & de Crombrugghe, B. Transgenic mice expressing a ligand-inducible cre recombinase in osteoblasts and odontoblasts: a new tool to examine physiology and disease of postnatal bone and tooth. Am. J. Pathol. 165, 1875–1882 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Iwano, M. et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 110, 341–350 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hjortnaes, J. et al. Valvular interstitial cells suppress calcification of valvular endothelial cells. Atherosclerosis 242, 251–260 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nagy, A. Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99–109 (2000).

    Article  PubMed  CAS  Google Scholar 

  41. Kretzschmar, K. & Watt, F. M. Lineage tracing. Cell 148, 33–45 (2012).

    Article  PubMed  CAS  Google Scholar 

  42. Feil, S., Valtcheva, N. & Feil, R. Inducible Cre mice. Methods Mol. Biol. 530, 343–363 (2009).

    Article  PubMed  CAS  Google Scholar 

  43. Tian, X., Pu, W. T. & Zhou, B. Cellular origin and developmental program of coronary angiogenesis. Circ. Res. 116, 515–530 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Buckingham, M. E. & Meilhac, S. M. Tracing cells for tracking cell lineage and clonal behavior. Dev. Cell 21, 394–409 (2011).

    Article  PubMed  CAS  Google Scholar 

  45. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ranchoux, B. et al. Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation 131, 1006–1018 (2015).

    Article  PubMed  CAS  Google Scholar 

  47. Lefrançais, E. et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 544, 105–109 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Buckingham, M., Meilhac, S. & Zaffran, S. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 6, 826–835 (2005).

    Article  PubMed  CAS  Google Scholar 

  49. Timmerman, L. A. et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 18, 99–115 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zhang, H. et al. Fibroblasts in an endocardial fibroelastosis disease model mainly originate from mesenchymal derivatives of epicardium. Cell Res. 27, 1157–1177 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Chen, Q. et al. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat. Commun. 7, 12422 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wessels, A. et al. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev. Biol. 366, 111–124 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wu, B. et al. Nfatc1 coordinates valve endocardial cell lineage development required for heart valve formation. Circ. Res. 109, 183–192 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Luxán, G., D’Amato, G., MacGrogan, D. & de la Pompa, J. L. Endocardial Notch signaling in cardiac development and disease. Circ. Res. 118, e1–e18 (2016).

    Article  PubMed  CAS  Google Scholar 

  55. Zhang, H., Lui, K. O. & Zhou, B. Endocardial cell plasticity in cardiac development, diseases and regeneration. Circ. Res. 122, 774–789 (2018).

    Article  PubMed  CAS  Google Scholar 

  56. Gittenberger-de Groot, A. C., Vrancken Peeters, M. P., Mentink, M. M., Gourdie, R. G. & Poelmann, R. E. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ. Res. 82, 1043–1052 (1998).

    Article  PubMed  CAS  Google Scholar 

  57. Dettman, R. W., Denetclaw, W. J., Ordahl, C. P. & Bristow, J. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev. Biol. 193, 169–181 (1998).

    Article  PubMed  CAS  Google Scholar 

  58. Perez-Pomares, J. M. et al. Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Dev. Biol. 247, 307–326 (2002).

    Article  PubMed  CAS  Google Scholar 

  59. Cai, C. L. et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 454, 104–108 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zhou, B. et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454, 109–113 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zamora, M., Manner, J. & Ruiz-Lozano, P. Epicardium-derived progenitor cells require beta-catenin for coronary artery formation. Proc. Natl Acad. Sci. USA 104, 18109–18114 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cano, E. et al. Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio-venous connections. Proc. Natl Acad. Sci. USA 113, 656–661 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Lang, D. et al. Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature 433, 884–887 (2005).

    Article  PubMed  CAS  Google Scholar 

  64. Stoller, J. Z. & Epstein, J. A. Cardiac neural crest. Semin. Cell Dev. Biol. 16, 704–715 (2005).

    Article  PubMed  CAS  Google Scholar 

  65. Ali, S. R. et al. Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation. Circ. Res. 115, 625–635 (2014).

    Article  PubMed  CAS  Google Scholar 

  66. Ma, L., Lu, M. F., Schwartz, R. J. & Martin, J. F. Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132, 5601–5611 (2005).

    Article  PubMed  CAS  Google Scholar 

  67. Lee, K. F. et al. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378, 394–398 (1995).

    Article  PubMed  CAS  Google Scholar 

  68. de la Pompa, J. L. et al. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392, 182–186 (1998).

    Article  PubMed  Google Scholar 

  69. Hurlstone, A. F. et al. The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature 425, 633–637 (2003).

    Article  PubMed  CAS  Google Scholar 

  70. Chang, C. P. et al. A field of myocardial-endocardial NFAT signaling underlies heart valve morphogenesis. Cell 118, 649–663 (2004).

    Article  PubMed  CAS  Google Scholar 

  71. Rivera-Feliciano, J. et al. Development of heart valves requires Gata4 expression in endothelial-derived cells. Development 133, 3607–3618 (2006).

    Article  PubMed  CAS  Google Scholar 

  72. Gaussin, V. et al. Alk3/Bmpr1a receptor is required for development of the atrioventricular canal into valves and annulus fibrosus. Circ. Res. 97, 219–226 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Camenisch, T. D., Schroeder, J. A., Bradley, J., Klewer, S. E. & McDonald, J. A. Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat. Med. 8, 850–855 (2002).

    Article  PubMed  CAS  Google Scholar 

  74. Jiao, K. et al. An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev. 17, 2362–2367 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Song, L. et al. Cell autonomous requirement of endocardial Smad4 during atrioventricular cushion development in mouse embryos. Dev. Dyn. 240, 211–220 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Shirai, M., Imanaka-Yoshida, K., Schneider, M. D., Schwartz, R. J. & Morisaki, T. T-Box 2, a mediator of Bmp-Smad signaling, induced hyaluronan synthase 2 and Tgfbeta2 expression and endocardial cushion formation. Proc. Natl Acad. Sci. USA 106, 18604–18609 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Letterio, J. J. et al. Maternal rescue of transforming growth factor-beta 1 null mice. Science 264, 1936–1938 (1994).

    Article  PubMed  CAS  Google Scholar 

  78. Dickson, M. C. et al. Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121, 1845–1854 (1995).

    PubMed  CAS  Google Scholar 

  79. Jiao, K. et al. Tgfbeta signaling is required for atrioventricular cushion mesenchyme remodeling during in vivo cardiac development. Development 133, 4585–4593 (2006).

    Article  PubMed  CAS  Google Scholar 

  80. Sorensen, L. K., Brooke, B. S., Li, D. Y. & Urness, L. D. Loss of distinct arterial and venous boundaries in mice lacking endoglin, a vascular-specific TGFβ coreceptor. Dev. Biol. 261, 235–250 (2003).

    Article  PubMed  CAS  Google Scholar 

  81. Wang, J. et al. Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart. Dev. Biol. 286, 299–310 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Song, L., Fässler, R., Mishina, Y., Jiao, K. & Baldwin, H. S. Essential functions of Alk3 during AV cushion morphogenesis in mouse embryonic hearts. Dev. Biol. 301, 276–286 (2007).

    Article  PubMed  CAS  Google Scholar 

  83. Kovacic, J. C., Mercader, N., Torres, M., Boehm, M. & Fuster, V. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation 125, 1795–1808 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Paranya, G. et al. Aortic valve endothelial cells undergo transforming growth factor-beta-mediated and non-transforming growth factor-beta-mediated transdifferentiation in vitro. Am. J. Pathol. 159, 1335–1343 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Paruchuri, S. et al. Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-A and transforming growth factor-beta2. Circ. Res. 99, 861–869 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  PubMed  CAS  Google Scholar 

  87. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    Article  PubMed  CAS  Google Scholar 

  88. Shapero, K., Wylie-Sears, J., Levine, R. A., Mayer, J. E. & Bischoff, J. Reciprocal interactions between mitral valve endothelial and interstitial cells reduce endothelial-to-mesenchymal transition and myofibroblastic activation. J. Mol. Cell Cardiol. 80, 175–185 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. He, S., Fontaine, A. A., Schwammenthal, E., Yoganathan, A. P. & Levine, R. A. Integrated mechanism for functional mitral regurgitation: leaflet restriction versus coapting force: in vitro studies. Circulation 96, 1826–1834 (1997).

    Article  PubMed  CAS  Google Scholar 

  90. Komeda, M. et al. Geometric determinants of ischemic mitral regurgitation. Circulation 96 (Suppl.), II-128–II-133 (1997).

    Google Scholar 

  91. Beaudoin, J. et al. Mitral leaflet changes following myocardial infarction: clinical evidence for maladaptive valvular remodeling. Circ. Cardiovasc. Imag. 10, e006512 (2017).

    Article  Google Scholar 

  92. Dal-Bianco, J. P. et al. Myocardial infarction alters adaptation of the tethered mitral valve. J. Am. Coll. Cardiol. 67, 275–287 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Dal-Bianco, J. P. et al. Active adaptation of the tethered mitral valve: insights into a compensatory mechanism for functional mitral regurgitation. Circulation 120, 334–342 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bartko, P. E. et al. Effect of losartan on mitral valve changes after myocardial infarction. J. Am. Coll. Cardiol. 70, 1232–1244 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. Bischoff, J. et al. CD45 expression in mitral valve endothelial cells after myocardial infarction. Circ. Res. 119, 1215–1225 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Hjortnaes, J., New, S. E. & Aikawa, E. Visualizing novel concepts of cardiovascular calcification. Trends Cardiovasc. Med. 23, 71–79 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Rajamannan, N. M. et al. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107, 2181–2184 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mohler, E. R. Mechanisms of aortic valve calcification. Am. J. Cardiol. 94, 1396–402, A6 (2004).

    Article  PubMed  Google Scholar 

  99. Osman, L., Yacoub, M. H., Latif, N., Amrani, M. & Chester, A. H. Role of human valve interstitial cells in valve calcification and their response to atorvastatin. Circulation 114, I547–552 (2006).

    PubMed  Google Scholar 

  100. Wylie-Sears, J., Aikawa, E., Levine, R. A., Yang, J. H. & Bischoff, J. Mitral valve endothelial cells with osteogenic differentiation potential. Arterioscler. Thromb. Vasc. Biol. 31, 598–607 (2011).

    Article  PubMed  CAS  Google Scholar 

  101. Krenning, G., Zeisberg, E. M. & Kalluri, R. The origin of fibroblasts and mechanism of cardiac fibrosis. J. Cell. Physiol. 225, 631–637 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Tallquist, M. D. & Molkentin, J. D. Redefining the identity of cardiac fibroblasts. Nat. Rev. Cardiol. 14, 484–491 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zeisberg, E. M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 13, 952–961 (2007).

    Article  PubMed  CAS  Google Scholar 

  104. Aisagbonhi, O. et al. Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis. Model. Mech. 4, 469–483 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Medici, D. et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat. Med. 16, 1400–1406 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Widyantoro, B. et al. Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation 121, 2407–2418 (2010).

    Article  PubMed  CAS  Google Scholar 

  107. Jeong, D. et al. Matricellular protein CCN5 reverses established cardiac fibrosis. J. Am. Coll. Cardiol. 67, 1556–1568 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Boon, R. A. et al. MicroRNA-34a regulates cardiac ageing and function. Nature 495, 107–110 (2013).

    Article  PubMed  CAS  Google Scholar 

  109. Seeger, T. et al. Inhibition of let-7 augments the recruitment of epicardial cells and improves cardiac function after myocardial infarction. J. Mol. Cell Cardiol. 94, 145–152 (2016).

    Article  PubMed  CAS  Google Scholar 

  110. Denby, L. et al. MicroRNA-214 antagonism protects against renal fibrosis. J. Am. Soc. Nephrol. 25, 65–80 (2014).

    Article  PubMed  CAS  Google Scholar 

  111. Thum, T. Noncoding RNAs and myocardial fibrosis. Nat. Rev. Cardiol. 11, 655–663 (2014).

    Article  PubMed  CAS  Google Scholar 

  112. van Amerongen, M. J. et al. Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. J. Pathol. 214, 377–386 (2008).

    Article  PubMed  Google Scholar 

  113. Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).

    Article  PubMed  CAS  Google Scholar 

  114. Zordan, P. et al. Macrophages commit postnatal endothelium-derived progenitors to angiogenesis and restrict endothelial to mesenchymal transition during muscle regeneration. Cell Death Dis. 5, e1031 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Venkov, C. D. et al. A proximal activator of transcription in epithelial-mesenchymal transition. J. Clin. Invest. 117, 482–491 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Kong, P., Christia, P., Saxena, A., Su, Y. & Frangogiannis, N. G. Lack of specificity of fibroblast-specific protein 1 in cardiac remodeling and fibrosis. Am. J. Physiol. Heart Circ. Physiol. 305, H1363–1372 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Zeisberg, M. & Duffield, J. S. Resolved: EMT produces fibroblasts in the kidney. J. Am. Soc. Nephrol. 21, 1247–1253 (2010).

    Article  PubMed  Google Scholar 

  118. Maddaluno, L. et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498, 492–496 (2013).

    Article  PubMed  CAS  Google Scholar 

  119. Kato, T., Mizuno, S. & Ito, A. A. Decrease in glomerular endothelial cells and endothelial-mesenchymal transition during glomerulosclerosis in the Tensin2-deficient mice (ICGN strain). Acta Histochem. Cytochem. 47, 265–271 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Mintet, E. et al. Identification of endothelial-to-mesenchymal transition as a potential participant in radiation proctitis. Am. J. Pathol. 185, 2550–2562 (2015).

    Article  PubMed  Google Scholar 

  121. Bai, J. et al. Netrin-1 attenuates the progression of renal dysfunction by blocking endothelial-to-mesenchymal transition in the 5/6 nephrectomy rat model. BMC Nephrol. 17, 47 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Zeisberg, M. et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964–968 (2003).

    Article  PubMed  CAS  Google Scholar 

  123. Grande, M. T. et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 21, 989–997 (2015).

    Article  PubMed  CAS  Google Scholar 

  124. Lovisa, S. et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med. 21, 998–1009 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Welch-Reardon, K. M. et al. Angiogenic sprouting is regulated by endothelial cell expression of Slug. J. Cell Sci. 127, 2017–2028 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Ye, X. & Weinberg, R. A. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol. 25, 675–686 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. He, L. et al. Enhancing the precision of genetic lineage tracing using dual recombinases. Nat. Med. 23, 1488–1498 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  128. J. H., M. et al. Endocardial fibroelastosis: a clinical and anatomic study of 47 patients with emphasis on its relationship to mitral insufficiency. Circulation 30, 759–782 (1964).

    Article  Google Scholar 

  129. McElhinney, D. B. et al. Assessment of left ventricular endocardial fibroelastosis in fetuses with aortic stenosis and evolving hypoplastic left heart syndrome. Am. J. Cardiol. 106, 1792–1797 (2010).

    Article  PubMed  Google Scholar 

  130. Xu, X. et al. Endocardial fibroelastosis is caused by aberrant endothelial to mesenchymal transition. Circ. Res. 116, 857–866 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Wang, J. C. & Bennett, M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ. Res. 111, 245–259 (2012).

    Article  PubMed  CAS  Google Scholar 

  132. Cybulsky, M. I., Cheong, C. & Robbins, C. S. Macrophages and dendritic cells: partners in atherogenesis. Circ. Res. 118, 637–652 (2016).

    Article  PubMed  CAS  Google Scholar 

  133. Weber, C. & Noels, H. Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 17, 1410–1422 (2011).

    Article  PubMed  CAS  Google Scholar 

  134. Souihol, C. E. M., Harmsen, M. C., Evans, P. C. & Krenning, G. Endothelial-mesenchymal transition in atherosclerosis. Cardiovasc. Res. 114, 565–577 (2018).

    Article  Google Scholar 

  135. Chen, P. Y. et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J. Clin. Invest. 125, 4514–4528 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Evrard, S. M. et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat. Commun. 7, 11853 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Moonen, J. R. et al. Endothelial-to-mesenchymal transition contributes to fibro-proliferative vascular disease and is modulated by fluid shear stress. Cardiovasc. Res. 108, 377–386 (2015).

    Article  PubMed  CAS  Google Scholar 

  138. Cooley, B. C. et al. TGF-beta signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci. Transl Med. 6, 227ra34 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Yao, Y. et al. A role for the endothelium in vascular calcification. Circ. Res. 113, 495–504 (2013).

    Article  PubMed  CAS  Google Scholar 

  140. Boström, K. I., Yao, J., Guihard, P. J., Blazquez-Medela, A. M. & Yao, Y. Endothelial-mesenchymal transition in atherosclerotic lesion calcification. Atherosclerosis 253, 124–127 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. D’Angelo, A. & Franco, B. The dynamic cilium in human diseases. Pathogenetics 2, 3 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Praetorius, H. A. & Spring, K. R. Removal of the MDCK cell primary cilium abolishes flow sensing. J. Membr. Biol. 191, 69–76 (2003).

    Article  PubMed  CAS  Google Scholar 

  143. Nauli, S. M. et al. Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117, 1161–1171 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Egorova, A. D. et al. Lack of primary cilia primes shear-induced endothelial-to-mesenchymal transition. Circ. Res. 108, 1093–1101 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Ten Dijke, P., Egorova, A. D., Goumans, M. J., Poelmann, R. E. & Hierck, B. P. TGF-β signaling in endothelial-to-mesenchymal transition: the role of shear stress and primary cilia. Sci. Signal. 5, pt2 (2012).

    PubMed  Google Scholar 

  146. Patschan, D., Schwarze, K., Henze, E., Patschan, S. & Müller, G. A. The endothelial-to-mesenchymal transition and endothelial cilia in EPC-mediated postischemic kidney protection. Am. J. Physiol. Renal Physiol. 310, F679–F687 (2016).

    Article  PubMed  CAS  Google Scholar 

  147. Humbert, M. et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 43, 13S–24S (2004).

    Article  PubMed  CAS  Google Scholar 

  148. Arciniegas, E., Frid, M. G., Douglas, I. S. & Stenmark, K. R. Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L1–L8 (2007).

    Article  PubMed  CAS  Google Scholar 

  149. Arciniegas, E., Neves, C. Y., Carrillo, L. M., Zambrano, E. A. & Ramírez, R. Endothelial-mesenchymal transition occurs during embryonic pulmonary artery development. Endothelium 12, 193–200 (2005).

    Article  PubMed  CAS  Google Scholar 

  150. Good, R. B. et al. Endothelial to mesenchymal transition contributes to endothelial dysfunction in pulmonary arterial hypertension. Am. J. Pathol. 185, 1850–1858 (2015).

    Article  PubMed  CAS  Google Scholar 

  151. Qiao, L. et al. Endothelial fate mapping in mice with pulmonary hypertension. Circulation 129, 692–703 (2014).

    Article  PubMed  CAS  Google Scholar 

  152. Li, Z., Wermuth, P. J., Benn, B. S., Lisanti, M. P. & Jimenez, S. A. Caveolin-1 deficiency induces spontaneous endothelial-to-mesenchymal transition in murine pulmonary endothelial cells in vitro. Am. J. Pathol. 182, 325–331 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Hashimoto, N. et al. Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell. Mol. Biol. 43, 161–172 (2010).

    Article  PubMed  CAS  Google Scholar 

  154. Choi, S. H. et al. A hypoxia-induced vascular endothelial-to-mesenchymal transition in development of radiation-induced pulmonary fibrosis. Clin. Cancer Res. 21, 3716–3726 (2015).

    Article  PubMed  CAS  Google Scholar 

  155. Li, J. et al. Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 59, 2612–2624 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Singh, K. K. et al. The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition. J. Biol. Chem. 290, 2547–2559 (2015).

    Article  PubMed  CAS  Google Scholar 

  157. Xiong, J. To be EndMT or not to be, that is the question in pulmonary hypertension. Protein Cell 6, 547–550 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Riley, P. R. & Smart, N. Vascularizing the heart. Cardiovasc. Res. 91, 260–268 (2011).

    Article  PubMed  CAS  Google Scholar 

  159. Qian, L. et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485, 593–598 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Song, K. et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485, 599–604 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Ubil, E. et al. Mesenchymal-endothelial transition contributes to cardiac neovascularization. Nature 514, 585–590 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Brumm, A. J. et al. Astrocytes can adopt endothelial cell fates in a p53-dependent manner. Mol. Neurobiol. 54, 4584–4596 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  163. van Berlo, J. H. et al. c-Kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509, 337–341 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. He, L. et al. Preexisting endothelial cells mediate cardiac neovascularization after injury. J. Clin. Invest. 127, 2968–2981 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Raven, A. et al. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547, 350–354 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Zeisberg, E. M. et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J. Am. Soc. Nephrol. 12, 2282–2287 (2008).

    Article  Google Scholar 

  167. Zeisberg, E. M. et al. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67, 10123–10128 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank L. He and H. Zhang (Shanghai Institutes for Biological Sciences, China) for providing the images of staining and other laboratory members for their valuable suggestions and insightful advice for the completion of this Review. The authors are supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS, XDB19000000, and XDA16020204), the National Science Foundation of China (31730112, 91639302, 31625019, and 81761138040), National key Research & Development Program of China (2016YFC1300600 and 2017YFC1001303), the Research Council of Hong Kong (04110515, 14111916, and C4024-16W), and the Health and Medical Research Fund (03140346 and 04152566).

Reviewer information

Nature Reviews Cardiology thanks J. Bischoff, E. Dejana, and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. searched for reference articles and drafted the paper. K.O.L. and B.Z. wrote and revised the article. All authors provided substantial contributions to the scientific discussion and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Kathy O. Lui or Bin Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Endothelial-to-mesenchymal transition

The transformation or differentiation of endothelial cells into mesenchymal cells.

Lineage tracing

The tracing of the progeny of a cell.

Cre–loxP

A bacteriophage recombination system that is used in mouse genetic studies.

Rosa26

A mouse gene locus that is open and allows ubiquitous transcription.

Constitutive Cre

A form of Cre that is constantly expressed and active for Cre–loxP recombination in the cell type targeted.

Inducible Cre

A form of Cre that is expressed in the cell type targeted but is active only after the administration of a drug.

mT/mG

Membrane tdTomato fluorescent protein /membrane green fluorescent protein (GFP).

Endocardial cushion

Cardiac jelly formed in the heart tube during valve formation.

Neural crest

A ridge of embryonic neural folds that converge to form the neural tube.

Rainbow or Confetti reporter

A type of reporter line that uses multiple fluorescence proteins.

Partial EndoMT

A process during which endothelial cells retain both endothelial and mesenchymal phenotypes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lui, K.O. & Zhou, B. Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases. Nat Rev Cardiol 15, 445–456 (2018). https://doi.org/10.1038/s41569-018-0023-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-018-0023-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing