Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering islets from stem cells for advanced therapies of diabetes

Abstract

Diabetes mellitus is a metabolic disorder that affects more than 460 million people worldwide. Type 1 diabetes (T1D) is caused by autoimmune destruction of β-cells, whereas type 2 diabetes (T2D) is caused by a hostile metabolic environment that leads to β-cell exhaustion and dysfunction. Currently, first-line medications treat the symptomatic insulin resistance and hyperglycaemia, but do not prevent the progressive decline of β-cell mass and function. Thus, advanced therapies need to be developed that either protect or regenerate endogenous β-cell mass early in disease progression or replace lost β-cells with stem cell-derived β-like cells or engineered islet-like clusters. In this Review, we discuss the state of the art of stem cell differentiation and islet engineering, reflect on current and future challenges in the area and highlight the potential for cell replacement therapies, disease modelling and drug development using these cells. These efforts in stem cell and regenerative medicine will lay the foundations for future biomedical breakthroughs and potentially curative treatments for diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Approaches to generate pancreatic human islets.
Fig. 2: Translation of the in vivo differentiation of islets of Langerhans to a dish.
Fig. 3: Potency assay for SC-islets to predict function after transplantation.

Similar content being viewed by others

References

  1. IDF. IDF Diabetes Atlas 9th edn. (International Diabetes Federation, 2019).

  2. Bender, C., Rodriguez-Calvo, T., Amirian, N., Coppieters, K. T. & von Herrath, M. G. The healthy exocrine pancreas contains preproinsulin-specific CD8 T cells that attack islets in type 1 diabetes. Sci. Adv. 6, 5586–5602 (2020).

    Google Scholar 

  3. Talchai, C., Xuan, S., Lin, H. V., Sussel, L. & Accili, D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 150, 1223–1234 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, Z., York, N. W., Nichols, C. G. & Remedi, M. S. Pancreatic β cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metab. 19, 872–882 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cinti, F. et al. Evidence of β-cell dedifferentiation in human type 2 diabetes. J. Clin. Endocrinol. Metab. 101, 1044–1054 (2016).

    CAS  PubMed  Google Scholar 

  6. Schnurr, T. M. et al. Obesity, unfavourable lifestyle and genetic risk of type 2 diabetes: a case–cohort study. Diabetologia 63, 1324–1332 (2020).

    CAS  PubMed  Google Scholar 

  7. Herold, K. C. et al. An Anti-CD3 antibody, teplizumab, in relatives at risk for type 1. Diabetes N. Engl. J. Med. 381, 603–613 (2019).

    CAS  PubMed  Google Scholar 

  8. Harrison, L. B., Adams-Huet, B., Raskin, P. & Lingvay, I. β-cell function preservation after 3.5 years of intensive diabetes therapy. Diabetes Care 35, 1406–1412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N. Engl. J. Med. 366, 1567–1576 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, P. et al. Combined inhibition of DYRK1A, SMAD, and trithorax pathways synergizes to induce robust replication in adult human beta cells. Cell Metab. 29, 638–652 (2019).

    CAS  PubMed  Google Scholar 

  11. Thompson, P. J. et al. Targeted elimination of senescent beta cells prevents type 1 diabetes. Cell Metab. 29, 1045–1060 (2019).

    CAS  PubMed  Google Scholar 

  12. Sachs, S. et al. Targeted pharmacological therapy restores β-cell function for diabetes remission. Nat. Metab. 2, 192–209 (2020).

    CAS  PubMed  Google Scholar 

  13. Kandaswamy, R. et al. OPTN/SRTR 2016 Annual Data Report: pancreas. Am. J. Transplant. 18, 114–171 (2018).

    PubMed  Google Scholar 

  14. Sneddon, J. B. et al. Stem cell therapies for treating diabetes: progress and remaining challenges. Cell Stem Cell 22, 810–823 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shapiro, A. M. J. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000).

    CAS  PubMed  Google Scholar 

  16. Latres, E., Finan, D. A., Greenstein, J. L., Kowalski, A. & Kieffer, T. J. Navigating two roads to glucose normalization in diabetes: automated insulin delivery devices and cell therapy. Cell Metab. 29, 545–563 (2019).

    CAS  PubMed  Google Scholar 

  17. Lumelsky, N. et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292, 1389–1394 (2001).

    CAS  PubMed  Google Scholar 

  18. Assady, S. et al. Insulin production by human embryonic stem cells. Diabetes 50, 1691–1697 (2001).

    CAS  PubMed  Google Scholar 

  19. Leite, N. C. et al. Modeling type 1 diabetes in vitro using human pluripotent stem cells. Cell Rep. 32, 107894 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Krentz, N. A. J. & Gloyn, A. L. Insights into pancreatic islet cell dysfunction from type 2 diabetes mellitus genetics. Nat. Rev. Endocrinol. 16, 202–212 (2020).

    CAS  PubMed  Google Scholar 

  21. Chiou, J. et al. Large-scale genetic association and single cell accessible chromatin mapping defines cell type-specific mechanisms of type 1 diabetes risk 2 3. Preprint at bioRxiv https://doi.org/10.1101/2021.01.13.426472 (2021).

    Article  Google Scholar 

  22. Millman, J. R. et al. Generation of stem cell-derived β-cells from patients with type 1 diabetes. Nat. Commun. 7, 11463 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. D’Amour, K. A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23, 1534–1541 (2005).

    PubMed  Google Scholar 

  24. D’Amour, K. A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24, 1392–1401 (2006).

    PubMed  Google Scholar 

  25. Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26, 443–452 (2008).

    CAS  PubMed  Google Scholar 

  26. Rezania, A. et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61, 2016–2029 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).

    CAS  PubMed  Google Scholar 

  28. Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Velazco-Cruz, L. et al. Acquisition of dynamic function in human stem cell-derived β cells. Stem Cell Rep. 12, 351–365 (2019).

    CAS  Google Scholar 

  30. Nostro, M. C. et al. Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138, 861–871 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mahaddalkar, P. U. et al. Generation of pancreatic β cells from CD177+ anterior definitive endoderm. Nat. Biotechnol. 38, 1061–1072 (2020).

    CAS  PubMed  Google Scholar 

  32. Yamanaka, S. Pluripotent stem cell-based cell therapy-promise and challenges. Stem Cell 27, 523–531 (2020).

    CAS  Google Scholar 

  33. Huang, C. Y. et al. Human iPSC banking: barriers and opportunities. J. Biomed. Sci. 26, 87 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Taylor, C. J., Peacock, S., Chaudhry, A. N., Bradley, J. A. & Bolton, E. M. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11, 147–152 (2012).

    CAS  PubMed  Google Scholar 

  35. Noguchi, G. M. & Huising, M. O. Integrating the inputs that shape pancreatic islet hormone release. Nat. Metab. 1, 1189–1201 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Brennan, J. et al. Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411, 965–969 (2001).

    CAS  PubMed  Google Scholar 

  37. Engert, S. et al. Wnt/β-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm formation in the mouse. Development 140, 3128–3138 (2013).

    CAS  PubMed  Google Scholar 

  38. Gadue, P., Huber, T. L., Paddison, P. J. & Keller, G. M. Wnt and TGF-β signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc. Natl Acad. Sci. USA 103, 16806–16811 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rodríguez-Seguel, E. et al. Mutually exclusive signaling signatures define the hepatic and pancreatic progenitor cell lineage divergence. Genes Dev. 27, 1932–1946 (2013).

    PubMed  PubMed Central  Google Scholar 

  40. Dessimoz, J., Opoka, R., Kordich, J. J., Grapin-Botton, A. & Wells, J. M. FGF signaling is necessary for establishing gut tube domains along the anterior–posterior axis in vivo. Mech. Dev. 123, 42–55 (2006).

    CAS  PubMed  Google Scholar 

  41. Wells, J. M. & Melton, D. A. Early mouse endoderm is patterned by soluble factors from adjacent germ layers. Development 127, 1563–1572 (2000).

    CAS  PubMed  Google Scholar 

  42. Bastidas-Ponce, A., Scheibner, K., Lickert, H. & Bakhti, M. Cellular and molecular mechanisms coordinating pancreas development. Development 144, 2873–2888 (2017).

    CAS  PubMed  Google Scholar 

  43. Johannesson, M. et al. FGF4 and retinoic acid direct differentiation of hESCs into PDX1-expressing foregut endoderm in a time- and concentration-dependent manner. PLoS ONE 4, e4794 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. Wesolowska-Andersen, A. et al. Analysis of differentiation protocols defines a common pancreatic progenitor molecular signature and guides refinement of endocrine differentiation. Stem Cell Rep. 14, 138–153 (2020).

    Google Scholar 

  45. Russ, H. A. et al. Controlled induction of human pancreatic progenitors produces functional β-like cells in vitro. EMBO J. 34, 1759–1772 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Shahjalal, H. M. et al. Generation of insulin-producing β-like cells from human iPS cells in a defined and completely xeno-free culture system. J. Mol. Cell Biol. 6, 394–408 (2014).

    CAS  PubMed  Google Scholar 

  47. Hebrok, M., Kim, S. K. & Melton, D. A. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 12, 1705–1713 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nostro, M. C. et al. Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Rep. 4, 591–604 (2015).

    CAS  Google Scholar 

  49. Chen, S. et al. A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat. Chem. Biol. 5, 258–265 (2009).

    CAS  PubMed  Google Scholar 

  50. Shih, H. P. et al. A gene regulatory network cooperatively controlled by Pdx1 and Sox9 governs lineage allocation of foregut progenitor cells. Cell Rep. 13, 326–336 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Taylor, B. L., Liu, F. F. & Sander, M. Nkx6.1 is essential for maintaining the functional state of pancreatic β cells. Cell Rep. 4, 1262–1275 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rezania, A. et al. Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cell 31, 2432–2442 (2013).

    CAS  Google Scholar 

  53. Ameri, J. et al. Efficient generation of glucose-responsive β cells from isolated GP2+ human pancreatic progenitors. Cell Rep. 19, 36–49 (2017).

    CAS  PubMed  Google Scholar 

  54. Cogger, K. F. et al. Glycoprotein 2 is a specific cell surface marker of human pancreatic progenitors. Nat. Commun. 8, 1–13 (2017).

    CAS  Google Scholar 

  55. Schaffer, A. E., Freude, K. K., Nelson, S. B. & Sander, M. Nkx6 transcription factors and Ptf1a function as antagonistic lineage determinants in multipotent pancreatic progenitors. Dev. Cell 18, 1022–1029 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Seymour, P. A. et al. SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc. Natl Acad. Sci. USA 104, 1865–1870 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gu, G., Dubauskaite, J. & Melton, D. A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457 (2002).

    CAS  PubMed  Google Scholar 

  58. Salisbury, R. J. et al. The window period of NEUROGENIN3 during human gestation. Islets 6, e954436 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Sharon, N. et al. A peninsular structure coordinates asynchronous differentiation with morphogenesis to generate pancreatic islets. Cell 176, 790–804 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Mamidi, A. et al. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature 564, 114–118 (2018).

    CAS  PubMed  Google Scholar 

  61. Kesavan, G. et al. Cdc42/N-WASP signaling links actin dynamics to pancreatic β cell delamination and differentiation. Development 141, 685–696 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Apelqvist, Å. et al. Notch signalling controls pancreatic cell differentiation. Nature 400, 877–881 (1999).

    CAS  PubMed  Google Scholar 

  63. Lee, J. C. et al. Regulation of the pancreatic pro-endocrine gene neurogenin3. Diabetes 50, 928–936 (2001).

    CAS  PubMed  Google Scholar 

  64. Krentz, N. A. J. et al. Phosphorylation of NEUROG3 links endocrine differentiation to the cell cycle in pancreatic progenitors. Dev. Cell 41, 129–142 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Azzarelli, R. et al. Multi-site neurogenin3 phosphorylation controls pancreatic endocrine differentiation article multi-site neurogenin3 phosphorylation controls pancreatic endocrine differentiation. Dev. Cell 41, 274–286 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Miyatsuka, T., Kosaka, Y., Kim, H. & German, M. S. Neurogenin3 inhibits proliferation in endocrine progenitors by inducing Cdkn1a. Proc. Natl Acad. Sci. USA 108, 185–190 (2011).

    PubMed  Google Scholar 

  67. Weng, C. et al. Single-cell lineage analysis reveals extensive multimodal transcriptional control during directed β-cell differentiation. Nat. Metab. 2, 1443–1458 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hogrebe, N. J., Augsornworawat, P., Maxwell, K. G., Velazco-Cruz, L. & Millman, J. R. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat. Biotechnol. 38, 460–470 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rosado-Olivieri, E. A., Anderson, K., Kenty, J. H. & Melton, D. A. YAP inhibition enhances the differentiation of functional stem cell-derived insulin-producing β cells. Nat. Commun. 10, 1464 (2019).

    PubMed  PubMed Central  Google Scholar 

  70. Sussel, L. et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic β cells. Development 125, 2213–2221 (1998).

    CAS  PubMed  Google Scholar 

  71. Huang, H.-P. et al. Regulation of the Pancreatic Islet-Specific Gene BETA2 (neuroD) by Neurogenin 3. Mol. Cell. Biol. 20, 3292–3307 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Öström, M. et al. Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into β-cells. PLoS ONE 3, e2841 (2008).

    PubMed  PubMed Central  Google Scholar 

  73. Lorberbaum, D. S. et al. Retinoic acid signaling within pancreatic endocrine progenitors regulates mouse and human β cell specification. Development 147, dev189977 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sharon, N. et al. Wnt signaling separates the progenitor and endocrine compartments during pancreas development. Cell Rep. 27, 2281–2291 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lin, H. M. et al. Transforming growth factor-β/Smad3 signaling regulates insulin gene transcription and pancreatic islet β-cell function. J. Biol. Chem. 284, 12246–12257 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Dhawan, S., Dirice, E., Kulkarni, R. N. & Bhushan, A. Inhibition of TGF-β signaling promotes human pancreatic β-cell replication. Diabetes 65, 1208–1218 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Thowfeequ, S., Ralphs, K. L., Yu, W. Y., Slack, J. M. W. & Tosh, D. Betacellulin inhibits amylase and glucagon production and promotes β cell differentiation in mouse embryonic pancreas. Diabetologia 50, 1688–1697 (2007).

    CAS  PubMed  Google Scholar 

  78. Löf-Öhlin, Z. M. et al. EGFR signalling controls cellular fate and pancreatic organogenesis by regulating apicobasal polarity. Nat. Cell Biol. 19, 1313–1325 (2017).

    PubMed  Google Scholar 

  79. Heinis, M. et al. Oxygen tension regulates pancreatic β-cell differentiation through hypoxia-inducible factor 1β. Diabetes 59, 662–669 (2010).

    CAS  PubMed  Google Scholar 

  80. Sosa-Pineda, B., Chowdhury, K., Torres, M., Oliver, G. & Gruss, P. The Pax4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas. Nature 386, 399–402 (1997).

    CAS  PubMed  Google Scholar 

  81. Collombat, P. et al. The ectopic expression of pax4 in the mouse pancreas converts progenitor cells into α and subsequently β cells. Cell 138, 449–462 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Veres, A. et al. Charting cellular identity during human in vitro β-cell differentiation. Nature 569, 368–373 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Jennings, R. E. et al. Development of the human pancreas from foregut to endocrine commitment. Diabetes 62, 3514–3522 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gao, X. et al. PEDF and PEDF-derived peptide 44mer protect cardiomyocytes against hypoxia-induced apoptosis and necroptosis via anti-oxidative effect. Sci. Rep. 4, 5637 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yoshihara, E. et al. Immune-evasive human islet-like organoids ameliorate diabetes. Nature 586, 606–611 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Collombat, P. et al. Embryonic endocrine pancreas and mature β cells acquire α and PP cell phenotypes upon Arx misexpression. J. Clin. Invest. 117, 961–970 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Collombat, P. et al. Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev. 17, 2591–2603 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Petri, A. et al. The effect of neurogenin3 deficiency on pancreatic gene expression in embryonic mice. J. Mol. Endocrinol. 37, 301–316 (2006).

    CAS  PubMed  Google Scholar 

  89. Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 3, 346–360.e4 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ramzy, A., Asadi, A. & Kieffer, T. J. Revisiting proinsulin processing: Evidence that human β-cells process proinsulin with prohormone convertase (pc) 1/3 but not pc2. Diabetes 69, 1451–1462 (2020).

    PubMed  Google Scholar 

  91. Bruin, J. E. et al. Characterization of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells. Stem Cell Res. 12, 194–208 (2014).

    CAS  PubMed  Google Scholar 

  92. Riedel, M. J. et al. Immunohistochemical characterisation of cells co-producing insulin and glucagon in the developing human pancreas. Diabetologia 55, 372–381 (2012).

    CAS  PubMed  Google Scholar 

  93. Riopel, M., Li, J., Fellows, G. F., Goodyer, C. G. & Wang, R. Ultrastructural and immunohistochemical analysis of the 8–20 week human fetal pancreas. Islets 6, e982949 (2014).

    PubMed  PubMed Central  Google Scholar 

  94. Rezania, A. et al. Production of functional glucagon-secreting α-cells from human embryonic stem cells. Diabetes 60, 239–247 (2011).

    CAS  PubMed  Google Scholar 

  95. Kelly, O. G. et al. Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat. Biotechnol. 29, 750–756 (2011).

    CAS  PubMed  Google Scholar 

  96. Petersen, M. B. K. et al. Single-Cell Gene Expression Analysis of a Human ESC Model of Pancreatic Endocrine Development Reveals Different Paths to β-Cell Differentiation. Stem Cell Rep. 9, 1246–1261 (2017).

    CAS  Google Scholar 

  97. Johansson, K. A. et al. Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev. Cell 12, 457–465 (2007).

    CAS  PubMed  Google Scholar 

  98. Hua, H. & Sarvetnick, N. Expression of Id1 in adult, regenerating and developing pancreas. Endocrine 32, 280–286 (2007).

    CAS  PubMed  Google Scholar 

  99. Peterson, Q. P. et al. A method for the generation of human stem cell-derived α cells. Nat. Commun. 11, 1–14 (2020).

    Google Scholar 

  100. De Marinis, Y. Z. et al. Enhancement of glucagon secretion in mouse and human pancreatic α cells by protein kinase C (PKC) involves intracellular trafficking of PKCα and PKCδ. Diabetologia 53, 717–729 (2010).

    CAS  PubMed  Google Scholar 

  101. Moya, N. et al. Generation of a homozygous ARX nuclear CFP (ARXnCFP/nCFP) reporter human iPSC line (HMGUi001-A-4). Stem Cell Res. 46, 101874 (2020).

    CAS  PubMed  Google Scholar 

  102. Siehler, J. et al. Generation of a heterozygous C-peptide–mCherry reporter human iPSC line (HMGUi001-A-8). Stem Cell Res. 50, 1873–5061 (2021).

    Google Scholar 

  103. Blöchinger, A. K. et al. Generation of an INSULIN-H2B-Cherry reporter human iPSC line. Stem Cell Res. 45, 101797 (2020).

    PubMed  Google Scholar 

  104. Tellez, K. et al. In vivo studies of glucagon secretion by human islets transplanted in mice. Nature Metab. 2, 547–557 (2020).

    CAS  Google Scholar 

  105. Nair, G. & Hebrok, M. Islet formation in mice and men: lessons for the generation of functional insulin-producing β-cells from human pluripotent stem cells. Curr. Opin. Genet. Dev. 32, 171–180 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Steiner, D. J., Kim, A., Miller, K. & Hara, M. Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets 2, 135–145 (2010).

    PubMed  Google Scholar 

  107. Gonçalves, C. A. et al. A 3D system to model human pancreas development and its reference single-cell transcriptome atlas identify signaling pathways required for progenitor expansion. Nat. Commun. 12, 3144 (2021).

    PubMed  PubMed Central  Google Scholar 

  108. Piper, K. et al. β cell differentiation during early human pancreas development. J. Endocrinol. 181, 11–23 (2004).

    CAS  PubMed  Google Scholar 

  109. Villasenor, A., Chong, D. C. & Cleaver, O. Biphasic Ngn3 expression in the developing pancreas. Dev. Dyn. 237, 3270–3279 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Berger, M., Gray, J. A. & Roth, B. L. The expanded biology of serotonin. Annu. Rev. Med. 60, 355–366 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Theis, F. J. & Lickert, H. A map of β-cell differentiation pathways supports cell therapies for diabetes. Nature 569, 342–343 (2019).

    CAS  PubMed  Google Scholar 

  112. Osafune, K. et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat. Biotechnol. 26, 313–315 (2008).

    CAS  PubMed  Google Scholar 

  113. Sui, L. et al. β-Cell replacement in mice using human type 1 diabetes nuclear transfer embryonic stem cells. Diabetes 67, 26–35 (2018).

    CAS  PubMed  Google Scholar 

  114. Nishizawa, M. et al. Epigenetic variation between human induced pluripotent stem cell lines is an indicator of differentiation capacity. Cell Stem Cell 19, 341–354 (2016).

    CAS  PubMed  Google Scholar 

  115. Kim, K. et al. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat. Biotechnol. 29, 1117–1119 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Cuomo, A. S. E. et al. Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. Nat. Commun. 11, 1–14 (2020).

    Google Scholar 

  117. Tsankov, A. M. et al. A qPCR ScoreCard quantifies the differentiation potential of human pluripotent stem cells. Nat. Biotechnol. 33, 1182–1192 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Müller, F. J. et al. A bioinformatic assay for pluripotency in human cells. Nat. Methods 8, 315–317 (2011).

    PubMed  PubMed Central  Google Scholar 

  119. Balboa, D., Prasad, R. B., Groop, L. & Otonkoski, T. Genome editing of human pancreatic β cell models: problems, possibilities and outlook. Diabetologia 62, 1329–1336 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Micallef, S. J. et al. INSGFP/w human embryonic stem cells facilitate isolation of in vitro derived insulin-producing cells. Diabetologia 55, 694–706 (2012).

    CAS  PubMed  Google Scholar 

  121. Nair, G. G. et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat. Cell Biol. 21, 263–274 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Molakandov, K. et al. Methods for differentiating and purifying pancreatic endocrine cells. US Patent Application 15/780,153 (2018).

  123. Li, X. et al. Single-cell RNA-seq reveals that CD9 is a negative marker of glucose-responsive pancreatic β-like cells derived from human pluripotent stem cells. Stem Cell Rep. 15, 1111–1126 (2020).

    CAS  Google Scholar 

  124. Dorrell, C. et al. Human islets contain four distinct subtypes of β cells. Nat. Commun. 7, 1–9 (2016).

    Google Scholar 

  125. Saunders, D. C. et al. Ectonucleoside triphosphate diphosphohydrolase-3 antibody targets adult human pancreatic β cells for in vitro and in vivo analysis. Cell Metab. 29, 745–754 (2019).

    CAS  PubMed  Google Scholar 

  126. Yu, Y. et al. Bioengineered human pseudoislets form efficiently from donated tissue, compare favourably with native islets in vitro and restore normoglycaemia in mice. Diabetologia 61, 2016–2029 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Hilderink, J. et al. Controlled aggregation of primary human pancreatic islet cells leads to glucose-responsive pseudoislets comparable to native islets. J. Cell. Mol. Med. 19, 1836–1846 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Vegas, A. J. et al. Long-term glycemic control using polymer-encapsulated human stem cell–derived beta cells in immune-competent mice. Nat. Med. 22, 306–311 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Augsornworawat, P., Maxwell, K. G., Velazco-Cruz, L. & Millman, J. R. Single-cell transcriptome profiling reveals β cell maturation in stem cell-derived islets after transplantation. Cell Rep. 32, 108067 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Yoshihara, E. et al. ERRγ is required for the metabolic maturation of therapeutically functional glucose-responsive β cells. Cell Metab. 23, 622–634 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Blum, B. et al. Functional β-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3. Nat. Biotechnol. 30, 261–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Hang, Y. et al. The MafA transcription factor becomes essential to islet β-cells soon after birth. Diabetes 63, 1994–2005 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. van der Meulen, T. et al. Urocortin 3 marks mature human primary and embryonic stem cell-derived pancreatic α and β cells. PLoS ONE 7, e52181 (2012).

    PubMed  PubMed Central  Google Scholar 

  134. Arda, H. E. et al. Age-dependent pancreatic gene regulation reveals mechanisms governing human β cell function. Cell Metab. 23, 909–920 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Aguayo-Mazzucato, C., Sanchez-Soto, C., Godinez-Puig, V., Gutiérrez-Ospina, G. & Hiriart, M. Restructuring of pancreatic islets and insulin secretion in a postnatal critical window. PLoS ONE 1, e35 (2006).

    PubMed  PubMed Central  Google Scholar 

  136. Henquin, J. C. & Nenquin, M. Immaturity of insulin secretion by pancreatic islets isolated from one human neonate. J. Diabetes Investig. 9, 270–273 (2018).

    CAS  PubMed  Google Scholar 

  137. Grasso, S., Messina, A., Saporito, N. & Reitano, G. Serum-insulin response to glucose and aminoacids in the premature infant. Lancet 2, 755–756 (1968).

    CAS  PubMed  Google Scholar 

  138. Hrvatin, S. et al. Differentiated human stem cells resemble fetal, not adult, β cells. Proc. Natl Acad. Sci. USA 111, 3038–3043 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Legøy, T. A. et al. In vivo environment swiftly restricts human pancreatic progenitors toward mono-hormonal identity via a HNF1A/HNF4A mechanism. Front. Cell Dev. Biol. 8, 109 (2020).

    PubMed  PubMed Central  Google Scholar 

  140. Cardenas-Diaz, F. L. et al. Modeling monogenic diabetes using human ESCs reveals developmental and metabolic deficiencies caused by mutations in HNF1A. Cell Stem Cell 25, 273–289 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Pepper, A. R. et al. Transplantation of human pancreatic endoderm cells reverses diabetes post transplantation in a prevascularized subcutaneous site. Stem Cell Rep. 8, 1689–1700 (2017).

    CAS  Google Scholar 

  142. Cozzitorto, C. et al. A specialized niche in the pancreatic microenvironment promotes endocrine differentiation. Dev. Cell 55, 150–162 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Rackham, C. L. et al. Optimizing beta cell function through mesenchymal stromal cell-mediated mitochondria transfer. Stem Cells 38, 574–584 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Montanari, E. et al. Multipotent mesenchymal stromal cells enhance insulin secretion from human islets via N-cadherin interaction and prolong function of transplanted encapsulated islets in mice. Stem Cell Res. Ther. 8, 199 (2017).

    PubMed  PubMed Central  Google Scholar 

  145. Arzouni, A. A. et al. Mesenchymal stromal cells improve human islet function through released products and extracellular matrix. Clin. Sci. 131, 2835–2845 (2017).

    CAS  Google Scholar 

  146. Wang, L. et al. Mesenchymal stem cells ameliorate β cell dysfunction of human type 2 diabetic islets by reversing β cell dedifferentiation. EBioMedicine 51, 102615 (2020).

    PubMed  PubMed Central  Google Scholar 

  147. Arzouni, A. A. et al. Characterization of the effects of mesenchymal stromal cells on mouse and human islet function. Stem Cells Transl. Med. 8, 935–944 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Nekrep, N., Wang, J., Miyatsuka, T. & German, M. S. Signals from the neural crest regulate beta-cell mass in the pancreas. Development 135, 2151–2160 (2008).

    CAS  PubMed  Google Scholar 

  149. Olerud, J. et al. Neural crest stem cells increase beta cell proliferation and improve islet function in co-transplanted murine pancreatic islets. Diabetologia 52, 2594–2601 (2009).

    CAS  PubMed  Google Scholar 

  150. Lau, J., Vasylovska, S., Kozlova, E. N. & Carlsson, P. O. Surface coating of pancreatic islets with neural crest stem cells improves engraftment and function after intraportal transplantation. Cell Transplant. 24, 2263–2272 (2015).

    PubMed  Google Scholar 

  151. Olmer, R. et al. Differentiation of human pluripotent stem cells into functional endothelial cells in scalable suspension culture. Stem Cell Rep. 10, 1657–1672 (2018).

    CAS  Google Scholar 

  152. Wimmer, R. A. et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565, 505–510 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Talavera-Adame, D. et al. Effective endothelial cell and human pluripotent stem cell interactions generate functional insulin-producing β cells. Diabetologia 59, 2378–2386 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Jaramillo, M., Mathew, S., Mamiya, H., Goh, S. K. & Banerjee, I. Endothelial cells mediate islet-specific maturation of human embryonic stem cell-derived pancreatic progenitor cells. Tissue Eng. Part A 21, 14–25 (2015).

    CAS  PubMed  Google Scholar 

  155. Urbanczyk, M., Zbinden, A., Layland, S. L., Duffy, G. & Schenke-Layland, K. Controlled heterotypic pseudo-islet assembly of human β-cells and human umbilical vein endothelial cells using magnetic levitation. Tissue Eng. Part A 26, 387–399 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Johansson, Å. et al. Endothelial cell signalling supports pancreatic β cell function in the rat. Diabetologia 52, 2385–2394 (2009).

    CAS  PubMed  Google Scholar 

  157. Narayanan, K. et al. Extracellular matrix-mediated differentiation of human embryonic stem cells: differentiation to insulin-secreting β cells. Tissue Eng. Part A 20, 424–433 (2014).

    CAS  PubMed  Google Scholar 

  158. Bi, H., Ye, K. & Jin, S. Proteomic analysis of decellularized pancreatic matrix identifies collagen V as a critical regulator for islet organogenesis from human pluripotent stem cells. Biomaterials 233, 119673 (2020).

    CAS  PubMed  Google Scholar 

  159. Haase, T. N. et al. Growth arrest specific protein (GAS) 6: a role in the regulation of proliferation and functional capacity of the perinatal rat β cell. Diabetologia 56, 763–773 (2013).

    CAS  PubMed  Google Scholar 

  160. Harmon, J. S. et al. β-Cell-specific overexpression of glutathione peroxidase preserves intranuclear MafA and reverses diabetes in db/db mice. Endocrinology 150, 4855–4862 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Aguayo-Mazzucato, C. et al. Thyroid hormone promotes postnatal rat pancreatic β-cell development and glucose-responsive insulin secretion through MAFA. Diabetes 62, 1569–1580 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Salinno, C. et al. β-Cell maturation and identity in health and disease. Int. J. Mol. Sci. 20, 1–20 (2019).

    Google Scholar 

  163. Helman, A. et al. A nutrient-sensing transition at birth triggers glucose-responsive insulin secretion. Cell Metab. 31, 1004–1016 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Alvarez-Dominguez, J. R. et al. Circadian entrainment triggers maturation of human in vitro islets. Cell Stem Cell 26, 108–122 (2020).

    CAS  PubMed  Google Scholar 

  165. Sinagoga, K. L. et al. Distinct roles for the mTOR pathway in postnatal morphogenesis, maturation and function of pancreatic islets. Development 144, 2402–2414 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Ni, Q. et al. Raptor regulates functional maturation of murine β cells. Nat. Commun. 8, 15755 (2017).

    PubMed  PubMed Central  Google Scholar 

  167. Blandino-Rosano, M. et al. Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing. Nat. Commun. 8, 1–15 (2017).

    Google Scholar 

  168. Koyanagi, M. et al. Ablation of TSC2 enhances insulin secretion by increasing the number of mitochondria through activation of mTORC1. PLoS ONE 6, e23238 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Elghazi, L. et al. Decreased IRS signaling impairs β-cell cycle progression and survival in transgenic mice overexpressing S6K in β-cells. Diabetes 59, 2390–2399 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Bartolomé, A. et al. Pancreatic β-cell failure mediated by mTORC1 hyperactivity and autophagic impairment. Diabetes 63, 2996–3008 (2014).

    PubMed  Google Scholar 

  171. Jaafar, R. et al. MTORC1-to-AMPK switching underlies β-cell metabolic plasticity during maturation and diabetes. J. Clin. Invest. 129, 4124–4137 (2019).

    PubMed  PubMed Central  Google Scholar 

  172. Rorsman, P. & Ashcroft, F. M. Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol. Rev. 98, 117–214 (2018).

    CAS  PubMed  Google Scholar 

  173. Schuit, F. et al. Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in β cells. J. Biol. Chem. 272, 18572–18579 (1997).

    CAS  PubMed  Google Scholar 

  174. Wortham, M. et al. Integrated in vivo quantitative proteomics and nutrient tracing reveals age-related metabolic rewiring of pancreatic β cell function. Cell Rep. 25, 2904–2918 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Jermendy, A. et al. Rat neonatal β cells lack the specialised metabolic phenotype of mature β cells. Diabetologia 54, 594–604 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Pullen, T. J. et al. Identification of genes selectively disallowed in the pancreatic islet. Islets 2, 89–95 (2010).

    PubMed  Google Scholar 

  177. Stolovich-Rain, M. et al. Weaning triggers a maturation step of pancreatic β cells. Dev. Cell 32, 535–545 (2015).

    CAS  PubMed  Google Scholar 

  178. Jacovetti, C., Matkovich, S. J., Rodriguez-Trejo, A., Guay, C. & Regazzi, R. Postnatal β-cell maturation is associated with islet-specific microRNA changes induced by nutrient shifts at weaning. Nat. Commun. 6, 1–14 (2015).

    Google Scholar 

  179. Velazco-Cruz, L. et al. SIX2 regulates human β cell differentiation from stem cells and functional maturation in vitro. Cell Rep. 31, 107687 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Davis, J. C. et al. Glucose response by stem cell-derived β cells in vitro is inhibited by a bottleneck in glycolysis. Cell Rep. 31, 107623 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Bader, E. et al. Identification of proliferative and mature β-cells in the islets of Langerhans. Nature 535, 430–434 (2016).

    CAS  PubMed  Google Scholar 

  182. Cortijo, C., Gouzi, M., Tissir, F. & Grapin-Botton, A. Planar cell polarity controls pancreatic β cell differentiation and glucose homeostasis. Cell Rep. 2, 1593–1606 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Roscioni, S. S., Migliorini, A., Gegg, M. & Lickert, H. Impact of islet architecture on β-cell heterogeneity, plasticity and function. Nat. Rev. Endocrinol. 12, 695–709 (2016).

    CAS  PubMed  Google Scholar 

  184. Ghazizadeh, Z. et al. ROCKII inhibition promotes the maturation of human pancreatic β-like cells. Nat. Commun. 8, 1–12 (2017).

    CAS  Google Scholar 

  185. Hammar, E., Tomas, A., Bosco, D. & Halban, P. A. Role of the Rho–ROCK (Rho-associated kinase) signaling pathway in the regulation of pancreatic β-cell function. Endocrinology 150, 2072–2079 (2009).

    CAS  PubMed  Google Scholar 

  186. Weber, D. J. FDA regulation of allogeneic islets as a biological product. Cell Biochem. Biophys. 40, 19–22 (2004).

    PubMed  Google Scholar 

  187. Hering, B. et al. Clinical islet transplantation (CIT) protocol CIT-07. Islet Transplantation in Type 1 diabetes. IsletStudy https://www.isletstudy.org/CITDocs/CIT-07%20Protocol%20ver%202.0F%20_11%20Oct%202007_.pdf (2007).

  188. Yamamoto, T. et al. Quality control for clinical islet transplantation: organ procurement and preservation, the islet processing facility, isolation, and potency tests. J. Hepatobiliary. Pancreat. Surg. 16, 131–136 (2009).

    PubMed  Google Scholar 

  189. Kayton, N. S. et al. Human islet preparations distributed for research exhibit a variety of insulin-secretory profiles. Am. J. Physiol. Endocrinol. Metab. 308, E592–E602 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Glieberman, A. L., Pope, B. D., Melton, D. A. & Parker, K. K. Building biomimetic potency tests for islet transplantation. Diabetes 70, 347–363 (2021).

    CAS  PubMed  Google Scholar 

  191. MacDonald, M. J. et al. Differences between Human and Rodent Pancreatic Islets. J. Biol. Chem. 286, 18383–18396 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Bank, H. L. Assessment of islet cell viability using fluorescent dyes. Diabetologia 30, (1987).

  193. Colton, C. K. et al. Characterization of Islet Preparations. Cell. Transplant. https://doi.org/10.1016/B978-012369415-7/50007-7 (2007).

    Article  Google Scholar 

  194. Hanson, M. S., Steffen, A., Danobeitia, J. S., Ludwig, B. & Fernandez, L. A. Flow cytometric quantification of glucose-stimulated β-cell metabolic flux can reveal impaired islet functional potency. Cell Transplant. 17, 1337–1347 (2008).

    PubMed  Google Scholar 

  195. Goto, M., Holgersson, J., Kumagai-Braesch, M. & Korsgren, O. The ADP/ATP ratio: a novel predictive assay for quality assessment of isolated pancreatic islets. Am. J. Transplant. 6, 2483–2487 (2006).

    CAS  PubMed  Google Scholar 

  196. Armann, B., Hanson, M. S., Hatch, E., Steffen, A. & Fernandez, L. A. Quantification of basal and stimulated ROS levels as predictors of islet potency and function. Am. J. Transplant. 7, 38–47 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Pepper, A. R. et al. The islet size to oxygen consumption ratio reliably predicts reversal of diabetes posttransplant. Cell Transplant. 21, 2797–2804 (2012).

    PubMed  Google Scholar 

  198. Saravanan, P. B. et al. Islet damage during isolation as assessed by miRNAs and the correlation of miRNA levels with posttransplantation outcome in islet autotransplantation. Am. J. Transplant. 18, 982–989 (2018).

    CAS  PubMed  Google Scholar 

  199. Todorov, I. et al. Quantitative assessment of β-cell apoptosis and cell composition of isolated, undisrupted human islets by laser scanning cytometry. Transplantation 90, 836–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Ilegems, E. et al. Light scattering as an intrinsic indicator for pancreatic islet cell mass and secretion. Sci. Rep. 5, 10740 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Agrawalla, B. K. et al. Glucagon-secreting α cell selective two-photon fluorescent probe TP-α: for live pancreatic islet imaging. J. Am. Chem. Soc. 137, 5355–5362 (2015).

    CAS  PubMed  Google Scholar 

  202. Kang, N. Y. et al. Multimodal imaging probe development for pancreatic β cells: from fluorescence to pet. J. Am. Chem. Soc. 142, 3430–3439 (2020).

    CAS  PubMed  Google Scholar 

  203. MacDonald, P. E. & Rorsman, P. Oscillations, intercellular coupling, and insulin secretion in pancreatic β cells. PLoS Biol. 4, e49 (2006).

    PubMed  PubMed Central  Google Scholar 

  204. Pfeifer, C. R. et al. Quantitative analysis of mouse pancreatic islet architecture by serial block-face SEM. J. Struct. Biol. 189, 44–52 (2015).

    CAS  PubMed  Google Scholar 

  205. Street, C. N. et al. Islet graft assessment in the Edmonton Protocol: implications for predicting long-term clinical outcome. Diabetes 53, 3107–3114 (2004).

    CAS  PubMed  Google Scholar 

  206. Seino, S., Shibasaki, T. & Minami, K. Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J. Clin. Investig. 121, 2118–2125 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Lyon, J. et al. Research-focused isolation of human islets from donors with and without diabetes at the Alberta Diabetes Institute IsletCore. Endocrinology 57, 560–569 (2016).

    Google Scholar 

  208. Song, W. J., Mondal, P., Li, Y., Lee, S. E. & Hussain, M. A. Pancreatic β-cell response to increased metabolic demand and to pharmacologic secretagogues requires epac2a. Diabetes 62, 2796–2807 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Hallakou-Bozec, S., Kergoat, M., Fouqueray, P., Bolze, S. & Moller, D. E. Imeglimin amplifies glucose-stimulated insulin release from diabetic islets via a distinct mechanism of action. PLoS ONE 16, (2021).

  210. Yoshida, W. et al. Selection of DNA aptamers against insulin and construction of an aptameric enzyme subunit for insulin sensing. Biosens. Bioelectron. 24, 1116–1120 (2009).

    CAS  PubMed  Google Scholar 

  211. Rafati, A., Zarrabi, A., Abediankenari, S., Aarabi, M. & Gill, P. Sensitive colorimetric assay using insulin G-quadruplex aptamer arrays on DNA nanotubes coupled with magnetic nanoparticles. R. Soc. Open Sci. 5, 171835 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Dishinger, J. F. & Kennedy, R. T. Serial immunoassays in parallel on a microfluidic chip for monitoring hormone secretion from living cells. Anal. Chem. 79, 947–954 (2007).

    CAS  PubMed  Google Scholar 

  213. Shigeto, H. et al. Insulin sensor cells for the analysis of insulin secretion responses in single living pancreatic β cells. Analyst 144, 3765–3772 (2019).

    CAS  PubMed  Google Scholar 

  214. Poudineh, M. et al. A fluorescence sandwich immunoassay for the real-time continuous detection of glucose and insulin in live animals. Nat. Biomed. Eng. 5, 53–63 (2021).

    CAS  PubMed  Google Scholar 

  215. Eliasson, L., Renström, E., Ding, W. G., Proks, P. & Rorsman, P. Rapid ATP-dependent priming of secretory granules precedes Ca2+-induced exocytosis in mouse pancreatic B-cells. J. Physiol. 503, 399–412 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Henquin, J. C., Dufrane, D. & Nenquin, M. Nutrient control of insulin secretion in isolated normal human islets. Diabetes 55, 3470–3477 (2006).

    CAS  PubMed  Google Scholar 

  217. Tarasov, A., Dusonchet, J. & Ashcroft, F. Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: A pas de deux. Diabetes 53, S113–S122 (2004).

    CAS  PubMed  Google Scholar 

  218. Göpel, S., Kanno, T., Barg, S., Galvanovskis, J. & Rorsman, P. Voltage-gated and resting membrane currents recorded from B-cells in intact mouse pancreatic islets. J. Physiol. 521, 717–728 (1999).

    PubMed  PubMed Central  Google Scholar 

  219. Braun, M. et al. Voltage-gated ion channels in human pancreatic β-cells: electrophysiological characterization and role in insulin secretion. Diabetes 57, 1618–1628 (2008).

    CAS  PubMed  Google Scholar 

  220. Camunas-Soler, J. et al. Patch-seq links single-cell transcriptomes to human islet dysfunction in diabetes. Cell Metab. 31, 1017-1031.e4 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Speier, S. & Rupnik, M. A novel approach to in situ characterization of pancreatic β-cells. Pflug. Arch. Eur. J. Physiol. 446, 553–558 (2003).

    CAS  Google Scholar 

  222. Marciniak, A. et al. Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology. Nat. Protoc. 9, 2809–2822 (2014).

    CAS  PubMed  Google Scholar 

  223. Mohammed, J. S., Wang, Y., Harvat, T. A., Oberholzer, J. & Eddington, D. T. Microfluidic device for multimodal characterization of pancreatic islets. Lab. Chip 9, 97–106 (2009).

    CAS  PubMed  Google Scholar 

  224. Jun, Y. et al. In vivo–mimicking microfluidic perfusion culture of pancreatic islet spheroids. Sci. Adv. 5, eaax4520 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Glieberman, A. L. et al. Synchronized stimulation and continuous insulin sensing in a microfluidic human Islet on a Chip designed for scalable manufacturing. Lab. Chip 19, 2993–3010 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Misun, P. M. et al. In vitro platform for studying human insulin release dynamics of single pancreatic islet microtissues at high resolution. Adv. Biosyst. 4, 1900291 (2020).

    Google Scholar 

  227. Tao, T. et al. Engineering human islet organoids from iPSCs using an organ-on-chip platform. Lab Chip 19, 948–958 (2019).

    CAS  PubMed  Google Scholar 

  228. Lundberg, M., Eriksson, A., Tran, B., Assarsson, E. & Fredriksson, S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 39, e102–e102 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Li, X., Hu, J. & Easley, C. J. Automated microfluidic droplet sampling with integrated, mix-and-read immunoassays to resolve endocrine tissue secretion dynamics. Lab. Chip 18, 2926–2935 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Byrnes, S. A. et al. Wash-Free, digital immunoassay in polydisperse droplets. Anal. Chem. 92, 3535–3543 (2020).

    CAS  PubMed  Google Scholar 

  231. Chen, Z. et al. Multiplexed, sequential secretion analysis of the same single cells reveals distinct effector response dynamics dependent on the initial basal state. Adv. Sci. 6, 1801361 (2019).

    Google Scholar 

  232. Shapiro, A. M. J. et al. International trial of the Edmonton Protocol for islet transplantation. N. Engl. J. Med. 355, 1318–1330 (2006).

    CAS  PubMed  Google Scholar 

  233. Brennan, D. C. et al. Long-term follow-up of the Edmonton Protocol of islet transplantation in the United States. Am. J. Transplant. 16, 509–517 (2016).

    CAS  PubMed  Google Scholar 

  234. Ricordi, C. et al. National Institutes of Health-sponsored clinical islet transplantation consortium phase 3 trial: manufacture of a complex cellular product at eight processing facilities. Diabetes 65, 3418–3428 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Hering, B. J. et al. Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care 39, 1230–1240 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Foster, E. D. et al. Improved health-related quality of life in a phase 3 islet transplantation trial in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care 41, dc171779 (2018).

    Google Scholar 

  237. Fuchs, J. & Hovorka, R. Closed-loop control in insulin pumps for type-1 diabetes mellitus: safety and efficacy. Expert Rev. Med. Devices 17, 707–720 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Bruin, J. E. et al. Accelerated maturation of human stem cell-derived pancreatic progenitor cells into insulin-secreting cells in immunodeficient rats relative to mice. Stem Cell Rep. 5, 1081–1096 (2015).

    CAS  Google Scholar 

  239. Schulz, T. C. Concise review: manufacturing of pancreatic endoderm cells for clinical trials in type 1 diabetes. Stem Cell Transl. Med. 4, 927–931 (2015).

    CAS  Google Scholar 

  240. van der Torren, C. R. et al. Immunogenicity of human embryonic stem cell-derived β cells. Diabetologia 60, 126–133 (2017).

    PubMed  Google Scholar 

  241. Henry, R. R. et al. Initial clinical evaluation of VC-01TM combination product — a stem cell-derived islet replacement for type 1 diabetes (T1D). Diabetes 67, 138-OR (2018).

    Google Scholar 

  242. Bruin, J. E. et al. Treating diet-induced diabetes and obesity with human embryonic stem cell-derived pancreatic progenitor cells and antidiabetic drugs. Stem Cell Rep. 4, 605–620 (2015).

    CAS  Google Scholar 

  243. Saber, N. et al. Sex differences in maturation of human embryonic stem cell-derived β cells in mice. Endocrinology 159, 1827–1841 (2018).

    CAS  PubMed  Google Scholar 

  244. Bruin, J. E. et al. Hypothyroidism impairs human stem cell-derived pancreatic progenitor cell maturation in mice. Diabetes 65, 1297–1309 (2016).

    CAS  PubMed  Google Scholar 

  245. Nair, G. G., Tzanakakis, E. S. & Hebrok, M. Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy. Nat. Rev. Endocrinol. 16, 506–518 (2020).

    PubMed  Google Scholar 

  246. Schulz, T. C. et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS ONE 7, 37004 (2012).

    Google Scholar 

  247. Konagaya, S. & Iwata, H. Chemically defined conditions for long-term maintenance of pancreatic progenitors derived from human induced pluripotent stem cells. Sci. Rep. 9, 1–10 (2019).

    CAS  Google Scholar 

  248. Cheng, X. et al. Self-renewing endodermal progenitor lines generated from human pluripotent stem cells. Cell Stem Cell 10, 371–384 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Sneddon, J. B., Borowiak, M. & Melton, D. A. Self-renewal of embryonic-stem-cell-derived progenitors by organ-matched mesenchyme. Nature 491, 765–768 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Stock, A. A. et al. Conformal coating of stem cell-derived islets for β cell replacement in type 1 diabetes. Stem Cell Rep. 14, 91–104 (2020).

    CAS  Google Scholar 

  251. Desai, T. & Shea, L. D. Advances in islet encapsulation technologies. Nat. Rev. Drug Discov. 16, 338–350 (2017).

    CAS  PubMed  Google Scholar 

  252. Rafael, E., Wernerson, A., Arner, P., Wu, G. S. & Tibell, A. In vivo evaluation of glucose permeability of an immunoisolation device intended for islet transplantation: a novel application of the microdialysis technique. Cell Transplant. 8, 317–326 (1999).

    CAS  PubMed  Google Scholar 

  253. Motté, E. et al. Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts. Am. J. Physiol. Metab. 307, E838–E846 (2014).

    Google Scholar 

  254. Robert, T. et al. Functional β cell mass from device-encapsulated hESC-derived pancreatic endoderm achieving metabolic control. Stem Cell Rep. 10, 739–750 (2018).

    CAS  Google Scholar 

  255. Kirk, K., Hao, E., Lahmy, R. & Itkin-Ansari, P. Human embryonic stem cell derived islet progenitors mature inside an encapsulation device without evidence of increased biomass or cell escape. Stem Cell Res. 12, 807–814 (2014).

    CAS  PubMed  Google Scholar 

  256. Bruin, J. E. et al. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia 56, 1987–1998 (2013).

    PubMed  Google Scholar 

  257. Haller, C. et al. Macroencapsulated human iPSC-derived pancreatic progenitors protect against STZ-induced hyperglycemia in mice. Stem Cell Rep. 12, 787–800 (2019).

    CAS  Google Scholar 

  258. Lee, S.-H. et al. Human β-cell precursors mature into functional insulin-producing cells in an immunoisolation device: implications for diabetes cell therapies. Transplantation 87, 983–991 (2009).

    PubMed  PubMed Central  Google Scholar 

  259. Bukys, M. A. Xeno-Transplantation of macro-encapsulated islets and pluripotent stem cell-derived pancreatic progenitors without Immunosuppression. J. Stem Cell Transplant. Biol. 02, 1–19 (2017).

    Google Scholar 

  260. Gala-Lopez, B. L. et al. Subcutaneous clinical islet transplantation in a prevascularized subcutaneous pouch — preliminary experience. CellR4 18, e2132 (2016).

    Google Scholar 

  261. Carlsson, P. O. et al. Transplantation of macroencapsulated human islets within the bioartificial pancreas βAir to patients with type 1 diabetes mellitus. Am. J. Transplant. 18, 1735–1744 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Pepper, A. R. et al. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat. Biotechnol. 33, 518–523 (2015).

    CAS  PubMed  Google Scholar 

  263. Evron, Y. et al. Long-term viability and function of transplanted islets macroencapsulated at high density are achieved by enhanced oxygen supply. Sci. Rep. 8, 6508 (2018).

    PubMed  PubMed Central  Google Scholar 

  264. Bluestone, J. A. & Tang, Q. Solving the puzzle of immune tolerance for β-cell replacement therapy for type 1 diabetes. Cell Stem Cell 27, 505–507 (2020).

    CAS  PubMed  Google Scholar 

  265. Ferreira, L. M. R., Muller, Y. D., Bluestone, J. A. & Tang, Q. Next-generation regulatory T cell therapy. Nat. Rev. Drug Discov. 18, 749–769 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Casey, S. C. et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Sci 352, 227–231 (2016).

    CAS  Google Scholar 

  267. Ezquer, F. et al. The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore TH1/TH2 balance and to modify the pancreatic microenvironment. Stem Cell 30, 1664–1674 (2012).

    CAS  Google Scholar 

  268. Graham, J. G. et al. PLG scaffold delivered antigen-specific regulatory T cells induce systemic tolerance in autoimmune diabetes. Tissue Eng. Part. A 19, 1465–1475 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Han, X. et al. Generation of hypoimmunogenic human pluripotent stem cells. Proc. Natl Acad. Sci. USA 116, 10441–10446 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Cai, E. P. et al. Genome-scale in vivo CRISPR screen identifies RNLS as a target for β cell protection in type 1 diabetes. Nat. Metab. 2, 934–945 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Wolf-Van Buerck, L. et al. LEA29Y expression in transgenic neonatal porcine islet-like cluster promotes long-lasting xenograft survival in humanized mice without immunosuppressive therapy. Sci. Rep. 7, 1–9 (2017).

    Google Scholar 

  273. Lee, S. et al. Analysis on migration and activation of live macrophages on transparent flat and nanostructured titanium. Acta Biomater. 7, 2337–2344 (2011).

    CAS  PubMed  Google Scholar 

  274. Liu, J. M. H. et al. Transforming growth factor-β1 delivery from microporous scaffolds decreases inflammation post-implant and enhances function of transplanted islets. Biomaterials 80, 11–19 (2016).

    PubMed  Google Scholar 

  275. Alagpulinsa, D. A. et al. Alginate-microencapsulation of human stem cell–derived β cells with CXCL12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression. Am. J. Transplant. 19, 1930–1940 (2019).

    CAS  PubMed  Google Scholar 

  276. Wang, X. et al. Point mutations in the PDX1 transactivation domain impair human β-cell development and function. Mol. Metab. 24, 80–97 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Bilekova, S., Sachs, S. & Lickert, H. Pharmacological targeting of endoplasmic reticulum stress in pancreatic β cells. Trends Pharmacol. Sci. 42, 85–95 (2021).

    CAS  PubMed  Google Scholar 

  278. Shang, L. et al. β-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome. Diabetes 63, 923–933 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Maxwell, K. G. et al. Gene-edited human stem cell-derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Sci. Transl Med. 12, 9106 (2020).

    Google Scholar 

  280. Balboa, D. et al. Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes. Elife 7, (2018).

  281. Montaser, H. et al. Loss of MANF causes childhood onset syndromic diabetes due to increased endoplasmic reticulum stress. Diabetes 70, 1006–1018 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Zeng, H. et al. An isogenic human ESC platform for functional evaluation of genome-wide-association-study-identified diabetes genes and drug discovery. Cell Stem Cell 19, 326–340 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Guo, M. et al. Using hESCs to probe the interaction of the diabetes-associated genes CDKAL1 and MT1E. Cell Rep. 19, 1512–1521 (2017).

    CAS  PubMed  Google Scholar 

  284. Hosokawa, Y. et al. Insulin-producing cells derived from ‘induced pluripotent stem cells’ of patients with fulminant type 1 diabetes: vulnerability to cytokine insults and increased expression of apoptosis-related genes. J. Diabetes Investig. 9, 481–493 (2018).

    CAS  Google Scholar 

  285. Wang, Y. J. et al. Multiplexed in situ imaging mass cytometry analysis of the human endocrine pancreas and immune system in type 1 diabetes. Cell Metab. 29, 769-783.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Hay, M., Thomas, D. W., Craighead, J. L., Economides, C. & Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 32, 40–51 (2014).

    CAS  PubMed  Google Scholar 

  287. DiMasi, J. A., Feldman, L., Seckler, A. & Wilson, A. Trends in risks associated with new drug development: success rates for investigational drugs. Clin. Pharmacol. Ther. 87, 272–277 (2010).

    CAS  PubMed  Google Scholar 

  288. Borowiak, M. et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4, 348–358 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Zhu, S. et al. A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell 4, 416–426 (2009).

    CAS  PubMed  Google Scholar 

  290. Korostylev, A. et al. A high-content small molecule screen identifies novel inducers of definitive endoderm. Mol. Metab. 6, 640–650 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Amin, S. et al. Discovery of a drug candidate for GLIS3-associated diabetes. Nat. Commun. 9, 1–12 (2018).

    Google Scholar 

  292. Hasilo, C. et al. Methods of treating diabetes using devices for cellular transplantation. US Patent Application 14/993,416 (2016).

  293. Chang, R. et al. Nanoporous immunoprotective device for stem-cell-derived β-cell replacement therapy. ACS Nano 11, 7747–7757 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Lammert, E. & Thorn, P. The role of the islet niche on β cell structure and function. J. Mol. Biol. 432, 1407–1418 (2020).

    CAS  PubMed  Google Scholar 

  295. Brissova, M. et al. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J. Histochem. Cytochem. 53, 1087–1097 (2005).

    CAS  PubMed  Google Scholar 

  296. Bonner-Weir, S. & Orci, L. New perspectives on the microvasculature of the islets of Langerhans in the rat. Diabetes 31, 883–889 (1982).

    CAS  PubMed  Google Scholar 

  297. Rodriguez-Diaz, R. & Caicedo, A. Neural control of the endocrine pancreas. Best. Pract. Res. Clin. Endocrinol. Metab. 28, 745–756 (2014).

    CAS  PubMed  Google Scholar 

  298. Llacua, L. A., Faas, M. M. & de Vos, P. Extracellular matrix molecules and their potential contribution to the function of transplanted pancreatic islets. Diabetologia 61, 1261–1272 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  299. Brunicardi, F. C. et al. Immunoneutralization of somatostatin, insulin, and glucagon causes alterations in islet cell secretion in the isolated perfused human pancreas. Pancreas 23, 302–308 (2001).

    CAS  PubMed  Google Scholar 

  300. Rodriguez-Diaz, R. et al. Paracrine interactions within the pancreatic islet determine the glycemic set point. Cell Metab. 27, 549–558 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Meda, P., Kohen, E., Kohen, C., Rabinovitch, A. & Orci, L. Direct communication of homologous and heterologous endocrine islet cells in culture. J. Cell Biol. 92, 221–226 (1982).

    CAS  PubMed  Google Scholar 

  302. Konstantinova, I. et al. EphA–Ephrin-A-mediated β cell communication regulates insulin secretion from pancreatic islets. Cell 129, 359–370 (2007).

    CAS  PubMed  Google Scholar 

  303. Briant, L. J. B. et al. δ-Cells and β-cells are electrically coupled and regulate α-cell activity via somatostatin. J. Physiol. 596, 197–215 (2018).

    CAS  PubMed  Google Scholar 

  304. Swisa, A. et al. PAX6 maintains β cell identity by repressing genes of alternative islet cell types. J. Clin. Invest. 127, 230–243 (2017).

    PubMed  Google Scholar 

  305. Gu, C. et al. Pancreatic β cells require NeuroD to achieve and maintain functional maturity. Cell Metab. 11, 298–310 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  306. Gao, T. et al. Pdx1 maintains β cell identity and function by repressing an α cell program. Cell Metab. 19, 259–271 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  307. Du, A. et al. Islet-1 is required for the maturation, proliferation, and survival of the endocrine pancreas. Diabetes 58, 2059–2069 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  308. Russell, R. et al. Loss of the transcription factor MAFB limits β-cell derivation from human PSCs. Nat. Commun. 11, 1–15 (2020).

    Google Scholar 

  309. Bevacqua, R. J. et al. SIX2 and SIX3 coordinately regulate functional maturity and fate of human pancreatic β cells. Genes Dev. 35, 234–249 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  310. Pullen, T. J. & Rutter, G. A. When less is more: the forbidden fruits of gene repression in the adult β-cell. Diabetes Obes. Metab. 15, 503–512 (2013).

    CAS  PubMed  Google Scholar 

  311. Lee, A. H., Heidtman, K., Hotamisligil, G. S. & Glimcher, L. H. Dual and opposing roles of the unfolded protein response regulated by IRE1α and XBP1 in proinsulin processing and insulin secretion. Proc. Natl Acad. Sci. USA 108, 8885–8890 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  312. Leighton, E., Sainsbury, C. A. & Jones, G. C. A practical review of C-peptide testing in diabetes. Diabetes Ther. 8, 475–487 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to all colleagues for not mentioning their work in this Review due to space constraints. The authors are thankful for funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement ISLET number 874839. This work was further supported by the German Federal Ministry of Education and Research (BMBF) (PancChip 01EK1607A and e-ISLET 031L0251), the German Center for Diabetes Research (DZD e.V.), the Helmholtz Association and the Technical University Munich. They would like to thank C. Daniel for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to all aspects of the article.

Corresponding author

Correspondence to Heiko Lickert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Drug Discovery thanks Timo Otonkoski and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siehler, J., Blöchinger, A.K., Meier, M. et al. Engineering islets from stem cells for advanced therapies of diabetes. Nat Rev Drug Discov 20, 920–940 (2021). https://doi.org/10.1038/s41573-021-00262-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-021-00262-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research