Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Challenges in measuring and understanding biological noise

An Author Correction to this article was published on 03 June 2019

This article has been updated

Abstract

Biochemical reactions are intrinsically stochastic, leading to variation in the production of mRNAs and proteins within cells. In the scientific literature, this source of variation is typically referred to as ‘noise’. The observed variability in molecular phenotypes arises from a combination of processes that amplify and attenuate noise. Our ability to quantify cell-to-cell variability in numerous biological contexts has been revolutionized by recent advances in single-cell technology, from imaging approaches through to ‘omics’ strategies. However, defining, accurately measuring and disentangling the stochastic and deterministic components of cell-to-cell variability is challenging. In this Review, we discuss the sources, impact and function of molecular phenotypic variability and highlight future directions to understand its role.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regulatory features controlling noise.
Fig. 2: Regulation of noise forms single-gene and coupled variability.
Fig. 3: Variability versus mean expression relationship.
Fig. 4: The role of biological noise in cellular systems.

Similar content being viewed by others

Change history

  • 03 June 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002). The first study that decomposed noise into intrinsic and extrinsic sources using a bacterial reporter system.

    CAS  PubMed  Google Scholar 

  2. Raser, J. M. & O’Shea, E. K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73 (2002). Mathematical formulation of translational bursting in B. subtilis cells.

    CAS  PubMed  Google Scholar 

  4. Sanchez, A., Choubey, S. & Kondev, J. Regulation of noise in gene expression. Annu. Rev. Biophys. 42, 469–491 (2013).

    CAS  PubMed  Google Scholar 

  5. Boettiger, A. N. & Levine, M. Synchronous and stochastic drosophila embryo. Science 325, 23–25 (2009).

    Google Scholar 

  6. Zopf, C. J., Quinn, K., Zeidman, J. & Maheshri, N. Cell-cycle dependence of transcription dominates noise in gene expression. PLOS Comput. Biol. 9, e1003161 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Iwamoto, K., Shindo, Y. & Takahashi, K. Modeling cellular noise underlying heterogeneous cell responses in the epidermal growth factor signaling pathway. PLOS Comput. Biol. 12, e1005222 (2016).

    PubMed  PubMed Central  Google Scholar 

  8. Kiviet, D. J. et al. Stochasticity of metabolism and growth at the single-cell level. Nature 514, 376–379 (2014).

    CAS  PubMed  Google Scholar 

  9. Arias, A. M. & Hayward, P. Filtering transcriptional noise during development: Concepts and mechanisms. Nat. Rev. Genet. 7, 34–44 (2006).

    CAS  PubMed  Google Scholar 

  10. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Bock, C., Farlik, M. & Sheffield, N. C. Multi-omics of single cells: strategies and applications. Trends Biotechnol. 34, 605–608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Macaulay, I. C., Ponting, C. P. & Voet, T. Single-cell multiomics: multiple measurements from single cells. Trends Genet. 33, 155–168 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Morgan, M. D. & Marioni, J. C. CpG island composition differences are a source of gene expression noise indicative of promoter responsiveness. Genome Biol. 19, 81 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Faure, A. J., Schmiedel, J. M. & Lehner, B. Systematic analysis of the determinants of gene expression noise in embryonic stem cells. Cell Syst. 5, 471–484 (2017). This study links genomic and epigenetic features to high or low transcriptional variability measured using scRNA-seq.

    CAS  PubMed  Google Scholar 

  15. Goolam, M. et al. Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos. Cell 165, 61–74 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mohammed, H. et al. Single-cell landscape of transcriptional heterogeneity and cell fate decisions during mouse early gastrulation. Cell Rep. 20, 1215–1228 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ohnishi, Y. et al. Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat. Cell Biol. 16, 27–37 (2014).

    CAS  PubMed  Google Scholar 

  18. Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 263–269 (2014). The authors discovered a heterogeneous immune response in dendritic cells where paracrine signalling supports the activation of surrounding cells.

    Google Scholar 

  19. Satija, R. & Shalek, A. K. Heterogeneity in immune responses: from populations to single cells. Trends Immunol. 35, 219–229 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Marusyk, A., Almendro, V. & Polyak, K. Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer 12, 323–334 (2012).

    CAS  PubMed  Google Scholar 

  21. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. & Sorger, P. K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428–432 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 (2017). Non-genetic variability in resistance markers leads to the survival of cancer cells on drug treatment, which is followed by epigenetic stabilization of the resistant state.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Martinez-Jimenez, C. P. et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science 1436, 1433–1436 (2017).

    Google Scholar 

  24. Enge, M. et al. Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell 171, 321–330 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ecker, S., Pancaldi, V., Valencia, A., Beck, S. & Paul, D. S. Epigenetic and transcriptional variability shape phenotypic plasticity. Bioessays 40, 1700148 (2017).

    Google Scholar 

  26. Golding, I., Paulsson, J., Zawilski, S. M. & Cox, E. C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 (2005). The MS2 stem loop system allows time-resolved tracking of transcriptional bursts in Escherichia coli cells.

    CAS  PubMed  Google Scholar 

  27. Chubb, J. R., Trcek, T., Shenoy, S. M. & Singer, R. H. Transcriptional pulsing of a developmental gene. Curr. Biol. 16, 1018–1025 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Raj, A., Rifkin, S. A., Andersen, E. & van Oudenaarden, A. Variability in gene expression underlies incomplete penetrance. Nature 463, 913–918 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sanchez, A. & Golding, I. Genetic determinants and cellular constraints in noisy gene expression. Science 342, 1188–1193 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ko, M. S. A stochastic model for gene induction. J. Theor. Biol. 153, 181–194 (1991).

    CAS  PubMed  Google Scholar 

  31. Peccoud, J. & Ycart, B. Markovian modelling of gene product synthesis. Theor. Popul. Biol. 48, 222–234 (1995). Ko (1991) and Peccoud and Ycart (1995) introduced the ‘random-telegraph’ model of transcription where a promoter switches between an on state and an off state, while mRNA abundance is governed by a birth (production) and death (degradation) process.

    Google Scholar 

  32. Larson, D. R., Singer, R. H. & Zenklusen, D. A. Single molecule view of gene expression. Trends Cell Biol. 19, 630–637 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLOS Biol. 4, e309 (2006). The authors profiled transcriptional bursting in mammalian cells using smFISH quantification of mRNA levels.

    PubMed  PubMed Central  Google Scholar 

  34. Zenklusen, D., Larson, D. R. & Singer, R. H. Single-RNA counting reveals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol. 15, 1263–1271 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Larsson, A. J. M. et al. Genomic encoding of transcriptional burst kinetics. Nature 565, 251–254 (2018).

    Google Scholar 

  36. Fukaya, T., Lim, B. & Levine, M. Enhancer control of transcriptional bursting. Cell 166, 358–368 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bartman, C. R. et al. Transcriptional burst initiation and polymerase pause release are key control points of transcriptional regulation. Mol. Cell 73, 519–532 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Antolović, V., Miermont, A., Corrigan, A. M. & Chubb, J. R. Generation of single-cell transcript variability by repression. Curr. Biol. 27, 1811–1817 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Tunnacliffe, E., Corrigan, A. M. & Chubb, J. R. Promoter-mediated diversification of transcriptional bursting dynamics following gene duplication. Proc. Natl Acad. Sci. USA 115, 8364–8369 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. Rodriguez, J. et al. Intrinsic dynamics of a human gene reveal the basis of expression heterogeneity. Cell 176, 213–226 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. Latchman, D. S. Transcription factors: an overview. Int. J. Biochem. Cell Biol. 29, 1305–1312 (1997).

    CAS  PubMed  Google Scholar 

  42. Tirosh, I., Weinberger, A., Carmi, M. & Barkai, N. A genetic signature of interspecies variations in gene expression. Nat. Genet. 38, 830–834 (2006).

    CAS  PubMed  Google Scholar 

  43. Landry, C. R., Lemos, B., Rifkin, S. A., Dickinson, W. J. & Hartl, D. L. Genetic properties influencing the evolvability of gene expression. Science 317, 118–122 (2007).

    CAS  PubMed  Google Scholar 

  44. López-Maury, L., Marguerat, S. & Bähler, J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat. Rev. Genet. 10, 68–68 (2009).

    Google Scholar 

  45. Sharon, E. et al. Probing the effect of promoters on noise in gene expression using thousands of designed sequences. Genome Res. 24, 1698–1706 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Choi, J. K. & Kim, Y.-J. Epigenetic regulation and the variability of gene expression. Nat. Genet. 40, 141–147 (2008).

    CAS  PubMed  Google Scholar 

  47. Portela, A. & Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol. 28, 1057–1068 (2010).

    CAS  PubMed  Google Scholar 

  48. Suganuma, T. & Workman, J. L. Signals and combinatorial functions of histone modifications. Annu. Rev. Biochem. 80, 473–499 (2011).

    CAS  PubMed  Google Scholar 

  49. Kar, G. et al. Flipping between polycomb repressed and active transcriptional states introduces noise in gene expression. Nat. Commun. 8, 36 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. Tirosh, I. & Barkai, N. Two strategies for gene regulation by promoter nucleosomes. Genome Res. 18, 1084–1091 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Small, E. C., Xi, L., Wang, J.-P., Widom, J. & Licht, J. D. Single-cell nucleosome mapping reveals the molecular basis of gene expression heterogeneity. Proc. Natl Acad. Sci. USA 111, E2462–E2471 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Day, D. S. et al. Comprehensive analysis of promoter-proximal RNA polymerase II pausing across mammalian cell types. Genome Biol. 17, 120 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. Battich, N., Stoeger, T. & Pelkmans, L. Control of transcript variability in single mammalian cells. Cell 163, 1596–1610 (2015). The authors performed spatially resolved smFISH, which allowed the prediction of gene expression on the basis of the microenvironment and identified larger transcript variability in the nucleus compared with the cytoplasm.

    CAS  PubMed  Google Scholar 

  54. Bahar Halpern, K. et al. Nuclear retention of mRNA in mammalian tissues. Cell Rep. 13, 2653–2662 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hansen, M. M. K., Desai, R. V., Simpson, M. L. & Weinberger, L. S. Cytoplasmic amplification of transcriptional noise generates substantial cell-to-cell variability. Cell Syst. 7, 384–397 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Grün, D., Kester, L. & van Oudenaarden, A. Validation of noise models for single-cell transcriptomics. Nat. Methods 11, 637–640 (2014). This study used an scRNA-seq and matched smFISH approach to model the variability versus mean expression relationship while accounting for technical noise.

    PubMed  Google Scholar 

  57. Schmiedel, J. M. et al. MicroRNA control of protein expression noise. Science 348, 128–131 (2015).

    CAS  PubMed  Google Scholar 

  58. Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A. The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610–620 (2015).

    CAS  PubMed  Google Scholar 

  59. Prakadan, S. M., Shalek, A. K. & Weitz, D. A. Scaling by shrinking: empowering single-cell ‘omics’ with microfluidic devices. Nat. Rev. Genet. 18, 345–361 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Clark, S. J., Lee, H. J., Smallwood, S. A., Kelsey, G. & Reik, W. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol. 17, 72 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. Patange, S., Girvan, M. & Larson, D. R. Single-cell systems biology: probing the basic unit of information flow. Curr. Opin. Syst. Biol. 8, 7–15 (2018).

    Google Scholar 

  62. Zong, C., Lu, S., Chapman, A. R. & Xie, X. S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1627 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Vitak, S. A. et al. Sequencing thousands of single-cell genomes with combinatorial indexing. Nat. Methods 14, 302–308 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Metzger, B. P. H., Yuan, D. C., Gruber, J. D., Duveau, F. & Wittkopp, P. J. Selection on noise constrains variation in a eukaryotic promoter. Nature 521, 344–347 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hornung, G. et al. Noise-mean relationship in mutated promoters. Genome Res. 22, 2409–2417 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mulqueen, R. M. et al. Highly scalable generation of DNA methylation profiles in single cells. Nat. Biotechnol. 36, 428–431 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cusanovich, D. A. et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015). Klein et al. (2015) and Macosko et al. (2015) introduced droplet-based scRNA-seq, which massively increased the throughput to generate single-cell transcriptomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rosenberg, A. B. et al. Single cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Cao, J. et al. Comprehensive single cell transcriptional profiling of a multicellular organism by combinatorial indexing. Science 357, 661–667 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Shahi, P., Kim, S. C., Haliburton, J. R., Gartner, Z. J. & Abate, A. R. Abseq: ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Sci. Rep. 7, 44447 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lyubimova, A. et al. Single-molecule mRNA detection and counting in mammalian tissue. Nat. Protoc. 8, 1743–1758 (2013).

    PubMed  Google Scholar 

  75. Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92, 342–357 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    CAS  PubMed  Google Scholar 

  77. Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link subcellular organization to cellular states. Science 361, eaar7042 (2018).

    PubMed  Google Scholar 

  78. Dey, S. S., Kester, L., Spanjaard, B., Bienko, M. & van Oudenaarden, A. Integrated genome and transcriptome sequencing of the same cell. Nat. Biotechnol. 33, 285–289 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Macaulay, I. C. et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12, 519–522 (2015).

    CAS  PubMed  Google Scholar 

  80. Angermueller, C. et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods 13, 229–232 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Frei, A. P. et al. Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat. Methods 13, 269–275 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dey, S. S., Foley, J. E., Limsirichai, P., Schaffer, D. V. & Arkin, A. P. Orthogonal control of expression mean and variance by epigenetic features at different genomic loci. Mol. Syst. Biol. 11, 806–806 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093–1095 (2013).

    CAS  PubMed  Google Scholar 

  86. Bar-Even, A. et al. Noise in protein expression scales with natural protein abundance. Nat. Genet. 38, 636–643 (2006).

    CAS  PubMed  Google Scholar 

  87. Hansen, M. M. K. et al. A post-transcriptional feedback mechanism for noise suppression and fate stabilization. Cell 173, 1609–1621 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Volfson, D. et al. Origins of extrinsic variability in eukaryotic gene expression. Nature 439, 861–864 (2006).

    CAS  PubMed  Google Scholar 

  89. Kolodziejczyk, A. A. et al. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell 17, 471–485 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Fan, J. et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat. Methods 13, 241–244 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim, J. K. & Marioni, J. C. Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data. Genome Biol. 14, R7 (2013).

    PubMed  PubMed Central  Google Scholar 

  92. Vallejos, C. A., Marioni, J. C. & Richardson, S. BASiCS: Bayesian analysis of single-cell sequencing data. PLOS Comput. Biol. 11, e1004333 (2015). This study used a hierarchical Bayesian framework that estimates cell-specific and gene-specific parameters from scRNA-seq data and captures biological transcript variability independent of technical noise.

    PubMed  PubMed Central  Google Scholar 

  93. Eling, N., Richard, A. C., Richardson, S., Marioni, J. C. & Vallejos, C. A. Correcting the mean-variance dependency for differential variability testing using single-cell RNA sequencing data. Cell Syst. 7, 284–294 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Arkin, A., Ross, J. & McAdams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zeng, L. et al. Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 141, 682–691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. St-Pierre, F. & Endy, D. Determination of cell fate selection during phage. Proc. Natl Acad. Sci. USA 105, 20705–20710 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Blake, W. J., Kærn, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

    CAS  PubMed  Google Scholar 

  98. Newman, J. R. S. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).

    CAS  PubMed  Google Scholar 

  99. Balázsi, G., Van Oudenaarden, A. & Collins, J. J. Cellular decision making and biological noise: from microbes to mammals. Cell 144, 910–925 (2011).

    PubMed  PubMed Central  Google Scholar 

  100. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lieb, M. The establishment of lysogenicity in Escherichia coli. J. Bacteriol. 65, 642–651 (1953).

    CAS  PubMed  Google Scholar 

  102. Schultz, D., Wolynes, P. G., Ben Jacob, E. & Onuchic, J. N. Deciding fate in adverse times: sporulation and competence in Bacillus subtilis. Proc. Natl Acad. Sci. USA 106, 21027–21034 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Süel, G. M., Garcia-Ojalvo, J., Liberman, L. M. & Elowitz, M. B. An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440, 545–550 (2006).

    PubMed  Google Scholar 

  104. Russell, J. R., Cabeen, M. T., Wiggins, P. A., Paulsson, J. & Losick, R. Noise in a phosphorelay drives stochastic entry into sporulation in Bacillus subtilis. EMBO J. 36, e201796988 (2017).

    Google Scholar 

  105. Eldar, A. & Elowitz, M. B. Functional roles for noise in genetic circuits. Nature 467, 167–173 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547 (2008). The authors describe the role of genome-wide transcriptional variability for aiding the cell fate decision of haematopoietic progenitor cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mojtahedi, M. et al. Cell fate decision as high-dimensional critical state transition. PLOS Biol. 14, e2000640 (2016).

    PubMed  PubMed Central  Google Scholar 

  108. Richard, A. et al. Single-cell-based analysis highlights a surge in cell-to-cell molecular variability preceding irreversible commitment in a differentiation process. PLOS Biol. 14, e1002585 (2016).

    PubMed  PubMed Central  Google Scholar 

  109. Baser, A. et al. Onset of differentiation is post-transcriptionally controlled in adult neural stem cells. Nature 566, 100–104 (2019).

    CAS  PubMed  Google Scholar 

  110. Dietrich, J.-E. & Hiiragi, T. Stochastic patterning in the mouse pre-implantation embryo. Development 134, 4219–4231 (2007).

    CAS  PubMed  Google Scholar 

  111. Zhang, H. T. & Hiiragi, T. Symmetry breaking in the mammalian embryo. Annu. Rev. Cell Dev. Biol. 34, 405–426 (2018).

    CAS  PubMed  Google Scholar 

  112. Maître, J. L. et al. Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536, 344–348 (2016). This study highlights a mechanism for cell-fate decision-making in the mouse embryo, which is independent of transcriptional variability: asymmetric segregation induces differences in cell contractility, which facilitates the correct sorting of cells.

    PubMed  PubMed Central  Google Scholar 

  113. Schrom, E. C. & Graham, A. L. Instructed subsets or agile swarms: how T-helper cells may adaptively counter uncertainty with variability and plasticity. Curr. Opin. Genet. Dev. 47, 75–82 (2017).

    CAS  PubMed  Google Scholar 

  114. Fang, M., Xie, H., Dougan, S. K., Ploegh, H. & van Oudenaarden, A. Stochastic cytokine expression induces mixed T helper cell states. PLOS Biol. 11, e1001618 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Antebi, Y. E. et al. Mapping differentiation under mixed culture conditions reveals a tunable continuum of T cell fates. PLOS Biol. 11, e1001616 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hoppe, P. S. et al. Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature 535, 299–302 (2016).

    CAS  PubMed  Google Scholar 

  117. Hagai, T. et al. Gene expression variability across cells and species shapes innate immunity. Nature 563, 197–202 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Fuhrmann, F. et al. Adequate immune response ensured by binary IL-2 and graded CD25 expression in a murine transfer model. eLife 5, e20616 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. Kellogg, R. A., Tian, C., Lipniacki, T. & Quake, S. R. Digital signaling decouples activation probability and population heterogeneity. eLife 4, e08931 (2015).

    PubMed  PubMed Central  Google Scholar 

  120. Stapel, L. C., Zechner, C. & Vastenhouw, N. L. Uniform gene expression in embryos is achieved by temporal averaging of transcription noise. Genes Dev. 31, 1635–1640 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ji, N. et al. Feedback control of gene expression variability in the Caenorhabditis elegans Wnt pathway. Cell 155, 869–880 (2013).

    CAS  PubMed  Google Scholar 

  122. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    PubMed  PubMed Central  Google Scholar 

  123. Cheung, P. et al. Single-cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell 173, 1385–1397 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Angelidis, I. et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat. Commun. 10, 963 (2018).

    Google Scholar 

  125. Lu, Y. et al. Systematic analysis of cell-to-cell expression variation of T lymphocytes in a human cohort identifies aging and genetic associations. Immunity 45, 1162–1175 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Huang, S., Ernberg, I. & Kauffman, S. Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin. Cell Dev. Biol. 20, 869–876 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Jia, D., Jolly, M. K., Kulkarni, P. & Levine, H. Phenotypic plasticity and cell fate decisions in cancer: insights from dynamical systems theory. Cancers (Basel). 9, E70 (2017).

    Google Scholar 

  128. Landau, D. A. et al. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell 26, 813–825 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Flusberg, D. A. & Sorger, P. K. Surviving apoptosis: life-death signaling in single cells. Trends Cell Biol. 25, 446–458 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Paek, A. L., Liu, J. C., Loewer, A., Forrester, W. C. & Lahav, G. Cell-to-cell variation in p53 dynamics leads to fractional killing. Cell 165, 631–642 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Roux, J. et al. Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold. Mol. Syst. Biol. 11, 803 (2015).

    PubMed  PubMed Central  Google Scholar 

  132. Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet. https://doi.org/10.1038/s41576-018-0088-9 (2019).

    Article  PubMed  Google Scholar 

  133. Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155–160 (2015). Estimation and subsequent removal of cell cycle effects in scRNA-seq data reveals subtler sources of variability.

    CAS  PubMed  Google Scholar 

  134. Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11, 163–166 (2014).

    CAS  PubMed  Google Scholar 

  135. Stoeckius, M. et al. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Jones, D. L., Brewster, R. C. & Phillips, R. Promoter architecture dictates cell-to-cell variability in gene expression. Science 346, 1533–1536 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Platt, R. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Schmiedel, J. M., Carey, L. B. & Lehner, B. Empirical noise-mean fitness landscapes and the evolution of gene expression. Preprint at bioRxiv https://doi.org/10.1101/436170 (2018).

    Article  Google Scholar 

  139. Lehner, B. Selection to minimise noise in living systems and its implications for the evolution of gene expression. Mol. Syst. Biol. 4, 170 (2008).

    PubMed  PubMed Central  Google Scholar 

  140. Duveau, F. et al. Fitness effects of altering gene expression noise in Saccharomyces cerevisiae. eLife 7, e37272 (2018).

    PubMed  PubMed Central  Google Scholar 

  141. Swain, P. S., Elowitz, M. B. & Siggia, E. D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl Acad. Sci. USA 99, 12795–12800 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Raser, J. M. & O’Shea, E. K. Noise in gene expression: origins, consequences, and control. Science 309, 2010–2014 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Stewart-Ornstein, J., Weissman, J. S. & El-Samad, H. Cellular noise regulons underlie fluctuations in Saccharomyces cerevisiae. Mol. Cell 45, 483–493 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Huang, S. Non-genetic heterogeneity of cells in development: more than just noise. Development 136, 3853–3862 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Colman-Lerner, A. et al. Regulated cell-to-cell variation in a cell-fate decision system. Nature 437, 699–706 (2005).

    CAS  PubMed  Google Scholar 

  146. Kempe, H., Schwabe, A., Cremazy, F., Verschure, P. J. & Bruggeman, F. J. The volumes and transcript counts of single cells reveal concentration homeostasis and capture biological noise. Mol. Biol. Cell 26, 797–804 (2015).

    PubMed  PubMed Central  Google Scholar 

  147. Padovan-Merhar, O. et al. Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol. Cell 58, 339–352 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhurinsky, J. et al. A coordinated global control over cellular transcription. Curr. Biol. 20, 2010–2015 (2010).

    CAS  PubMed  Google Scholar 

  149. Akopyan, K. et al. Assessing kinetics from fixed cells reveals activation of the mitotic entry network at the S/G2 transition. Mol. Cell 53, 843–853 (2014).

    CAS  PubMed  Google Scholar 

  150. Kafri, R. et al. Dynamics extracted from fixed cells reveal feedback linking cell growth to cell cycle. Nature 494, 480–483 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Simons for critically reading and commenting on the manuscript. We also thank D. Grün for providing the smFISH counts for serum-grown mouse embryonic stem cells in figure 3. N.E. was supported by the European Molecular Biology Laboratory (EMBL) International PhD Programme. M.D.M. was supported by Wellcome Trust grant 105045/Z/14/Z to J.C.M. J.C.M. was supported by core funding from EMBL and Cancer Research UK (award number 17197).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the manuscript.

Corresponding authors

Correspondence to Nils Eling, Michael D. Morgan or John C. Marioni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Single-molecule fluorescence in situ hybridization

(smFISH). Spatial detection of individual RNA molecules by hybridization with fluorescently labelled DNA probes and imaging.

MS2 stem loop system

Spatial detection of individual RNA molecules by binding of the GFP-tagged MS2 bacteriophage protein to MS2 RNA-binding sequences inserted in the non-coding regions of target RNA molecules.

CpG islands

(CGIs). Computationally defined genomic regions of more than 200 bases with a high CpG dinucleotide content, typically defined as being greater than the genome-wide average.

Bivalent promoters

Gene promoters with both repressive and activating chromatin marks.

Technical noise

Variation in measured components (for example, mRNA or proteins) that arises during data acquisition.

Sporulation

A process during which the cell’s vegetative growth ends, leading to the formation of endospores that survive the altered environment.

Competence

Competent bacteria have the ability to take up DNA from the environment.

Symmetry breaking

The emergence of asymmetry regarding the distribution of factors influencing developmental potency.

Paracrine and autocrine signalling

Autocrine hormone signalling affects the hormone-producing cell, whereas paracrine hormone signalling affects nearby cells.

Autodepletion

Depletion of precursor RNAs by their protein product.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eling, N., Morgan, M.D. & Marioni, J.C. Challenges in measuring and understanding biological noise. Nat Rev Genet 20, 536–548 (2019). https://doi.org/10.1038/s41576-019-0130-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-019-0130-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing