Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

The social network of microorganisms — how auxotrophies shape complex communities

Abstract

Microorganisms engage in complex interactions with other organisms and their environment. Recent studies have shown that these interactions are not limited to the exchange of electron donors. Most microorganisms are auxotrophs, thus relying on external nutrients for growth, including the exchange of amino acids and vitamins. Currently, we lack a deeper understanding of auxotrophies in microorganisms and how nutrient requirements differ between different strains and different environments. In this Opinion article, we describe how the study of auxotrophies and nutrient requirements among members of complex communities will enable new insights into community composition and assembly. Understanding this complex network over space and time is crucial for developing strategies to interrogate and shape microbial communities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nutrient cycling in microbial communities.
Fig. 2: Dynamic of interactions.
Fig. 3: Microbial community perturbation and resilience.

Similar content being viewed by others

References

  1. Little, A. E. F., Robinson, C. J., Peterson, S. B., Raffa, K. F. & Handelsman, J. Rules of engagement: Interspecies interactions that regulate microbial communities. Annu. Rev. Microbiol. 62, 375–401 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Mitri, S. & Richard Foster, K. The genotypic view of social interactions in microbial communities. Annu. Rev. Genet. 47, 247–273 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. D’Souza, G. et al. Less is more: Selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution 68, 2559–2570 (2014).

    Article  PubMed  Google Scholar 

  4. Yu, X., Walker, D. H., Liu, Y. & Zhang, L. Amino acid biosynthesis deficiency in bacteria associated with human and animal hosts. Infect. Genet. Evol. 9, 514–517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Embree, M., Liu, J. K., Al-bassam, M. M. & Zengler, K. Networks of energetic and metabolic interactions define dynamics in microbial communities. Proc. Natl Acad. Sci. USA 112, 15450–15455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, Y.-F. et al. Metabolic capability and in situ activity of microorganisms in an oil reservoir. Microbiome 6, 5 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rodionova, I. A. et al. Genomic distribution of B-vitamin auxotrophy and uptake transporters in environmental bacteria from the Chloroflexi phylum. Environ. Microbiol. Rep. 7, 204–210 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438, 90–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Wexler, A. G. & Goodman, A. L. An insider’s perspective: Bacteroides as a window into the microbiome. Nat. Microbiol. 2, 1–11 (2017).

    Article  Google Scholar 

  10. Wyn-Jones, R. G. Ubiquinone deficiency in an auxotroph of Escherichia coli requiring 4-hydroxybenzoic acid. Biochem. J. 103, 714–719 (1967).

    Article  Google Scholar 

  11. Gruss, A., Borezée-durant, E. & Lechardeur, D. in Advances in microbial physiology (ed. Poole, R. K.) 70–111 (Elsevier, 2012).

  12. Nichols, D. et al. Short peptide induces an ‘Uncultivable’ microorganism to grow in vitro. Appl. Environ. Microbiol. 74, 4889–4897 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Onofrio, A. D. et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Cell Chem. Biol. 17, 254–264 (2010).

    Google Scholar 

  14. Koppel, N., Rekdal, V. M. & Balskus, E. P. Chemical transformation of xenobiotics by the human gut microbiota. Microbiota 356, 1–11 (2017).

    Google Scholar 

  15. Morris, J. J., Kirkegaard, R., Szul, M. J., Johnson, Z. I. & Zinser, E. R. Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by ‘helper’ heterotrophic bacteria. Appl. Environ. Microbiol. 74, 4530–4534 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Germerodt, S. et al. Pervasive selection for cooperative cross-feeding in bacterial communities. PLoS Comput. Biol. 12, 1–21 (2016).

    Article  Google Scholar 

  17. Harvey, E. & Heys, J. Quantifying the effects of the division of labor in metabolic pathways. J. Theor. Biol. 360, 222–242 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Verbruggen, E. et al. Spatial structure and interspecific cooperation: Theory and an empirical test using the mycorrhizal mutualism. Am. Nat. 179, E133–E146 (2012).

    Article  PubMed  Google Scholar 

  19. Kreft, J. Biofilms promote altruism. Microbiology 150, 2751–2760 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Guzmán, G. I. et al. Model-driven discovery of underground metabolic functions in Escherichia coli. Proc. Natl Acad. Sci. USA 112, 929–934 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Lin, L., Yu, Z. & Li, Y. Sequential batch thermophilic solid-state anaerobic digestion of lignocellulosic biomass via recirculating digestate as inoculum –part II: microbial diversity and succession. Bioresour. Technol. 241, 1027–1035 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Degnan, P. H., Taga, M. E. & Goodman, A. L. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab. 20, 769–778 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zilberman-schapira, G. et al. The gut microbiome in human immunodeficiency virus infection. BMC Med. 14, 1–11 (2016).

    Article  Google Scholar 

  25. Rakoff-Nahoum, S., Foster, K. R. & Comstock, L. E. The evolution of cooperation within the gut microbiota. Nature 533, 255–259 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lopez-Siles, M., Duncan, S. H., Garcia-Gil, L. J. & Martinez-Medina, M. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J. 11, 841–852 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fischbach, M. A. & Sonnenburg, J. L. Eating for two: How metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10, 336–347 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rey, F. E. et al. Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc. Natl Acad. Sci. USA 110, 13582–13587 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zengler, K. et al. Cultivating the uncultured. Proc. Natl Acad. Sci. USA 99, 15681–15686 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oberhardt, M. A. et al. Harnessing the landscape of microbial culture media to predict new organism–media pairings. Nat. Commun. 6, 8493 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Romine, M. F., Rodionov, D. A., Maezato, Y., Osterman, A. L. & Nelson, W. C. Underlying mechanisms for syntrophic metabolism of essential enzyme cofactors in microbial communities. ISME 11, 1434–1446 (2017).

    Article  CAS  Google Scholar 

  32. Hibberd, M. C. et al. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. Sci. Transl Med. 9, eaal4069 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl Acad. Sci. USA 111, E2149–E2156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mee, M. T. & Wang, H. H. Engineering ecosystems and synthetic ecologies. Mol. Biosyst. 8, 2470–2483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaleta, C., Schäuble, S., Rinas, U. & Schuster, S. Metabolic costs of amino acid and protein production in Escherichia coli. Biotechnol. J. 8, 1105–1114 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Heizer, E. M. Jr et al. Amino acid cost and codon-usage biases in 6 prokaryotic genomes: a whole-genome analysis. Mol. Biol. Evol. 23, 1670–1680 (2004).

    Article  Google Scholar 

  37. Zuñiga, C. et al. Predicting dynamic metabolic demands in the photosynthetic eukaryote Chlorella vulgaris. Plant Physiol. 176, 450–462 (2018).

    Article  PubMed  Google Scholar 

  38. Neis, E. P. J. G., Dejong, C. H. C. & Rensen, S. S. The role of microbial amino acid metabolism in host metabolism. Nutrients 7, 2930–2946 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stackebrandt, E., Cummins, C. S. & Johnson, J. L. in The Prokaryotes (ed. Falkom, S.) 400–418 (Springer−Verlag, New York, 2006).

  40. Burkovski, A. & Kramer, R. Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl. Microbiol. Biotechnol. 58, 265–274 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Genee, H. J. et al. Functional mining of transporters using synthetic selections. Nat. Chem. Biol. 12, 1015–1022 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Rodionov, D. A. et al. A novel class of modular transporters for vitamins in Prokaryotes. J. Bacteriol. 191, 42–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Allen, R. H. & Stabler, S. P. Identification and quantitation of cobalamin and cobalamin analogues in human feces. Am. J. Clin. Nutr. 87, 1324–1335 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seth, E. C. & Taga, M. E. Nutrient cross-feeding in the microbial world. Front. Microbiol. 5, 350 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Degnan, P. H., Barry, N. A., Mok, K. C., Taga, M. E. & Goodman, A. L. Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut. Cell Host Microbe 15, 47–57 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gajer, P. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl Med. 4, 132ra52 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Merchant, S. S. & Helmann, J. D. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv. Microb. Physiol. 60, 91–210 (2014).

    Article  Google Scholar 

  49. Bren, A., Hart, Y., Dekel, E., Koster, D. & Alon, U. The last generation of bacterial growth in limiting nutrient. BMC Syst. Biol. 7, 27 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shou, W., Ram, S. & Vilar, J. M. G. Synthetic cooperation in engineered yeast populations. Proc. Natl Acad. Sci. USA 104, 1877–1882 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schink, B. Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81, 257–261 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Jiang, X. et al. Impact of spatial organization on a novel auxotrophic interaction among soil microbes. Preprint at bioRxiv, 195339 (2017).

  53. Harcombe, W. R. et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell 7, 1104–1115 (2010).

    Google Scholar 

  54. Thaiss, C. A. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167, 1495–1510 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Greenhalgh, K., Meyer, K. M., Aagaard, K. M. & Wilmes, P. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environ. Microbiol. 18, 2103–2116 (2016).

    Article  PubMed  Google Scholar 

  57. Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016).

    Article  CAS  Google Scholar 

  58. Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Collins, J. et al. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature 553, 291–294 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Kartal, B., Kuenen, J. G. & Van Loosdrecht, M. C. M. Sewage treatment with anammox. Science 328, 702–703 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Lawson, C. E. et al. Metabolic network analysis reveals microbial community interactions in anammox granules. Nat. Commun. 8, 15416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kumar, R. et al. Identification of donor microbe species that colonize and persist long term in the recipient after fecal transplant for recurrent Clostridium difficile. Biofilms Microbiomes 3, 1–12 (2017).

    Article  Google Scholar 

  63. Cuskin, F. et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517, 165–169 (2016).

    Article  Google Scholar 

  64. Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Riddle, M. S. & Connor, B. A. The traveling microbiome. Curr. Infect. Dis. Rep. 18, 29 (2016).

    Article  PubMed  Google Scholar 

  66. Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: Networks, competition, and stability. Science 350, 663–666 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Sommer, F., Anderson, J. M., Bharti, R., Raes, J. & Rosenstiel, P. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 15, 630–638 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Gunderson, L. H. Ecological resilience - In theory and application. Annu. Rev. Ecol. Syst. 31, 425–439 (2000).

    Article  Google Scholar 

  69. Hoek, T. A. et al. Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biol. 14, e1002540 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Köpke, M., Straub, M. & Dürre, P. Clostridium difficile is an autotrophic bacterial pathogen. PLoS ONE 8, e62157 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Byrd, A. L. et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci. Transl Med. 9, eaal4651 (2017).

    Article  PubMed  Google Scholar 

  72. Nakatsuji, T. et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. 9, eaah4680 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bosi, E. et al. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proc. Natl Acad. Sci. USA 113, E3801–E3809 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ribet, D. & Cossart, P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 17, 173–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Byrd, B. A. L., Segre, J. A. & Koch, R. Adapting Koch’s postulates. Science 351, 224–226 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Franzosa, E. A. et al. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol. 13, 360–372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Zuñiga, C., Zaramela, L. & Zengler, K. Elucidation of complexity and prediction of interactions in microbial communities. Microb. Biotechnol. 10, 1500–1522 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Markowitz, V. M. et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res. 40, 115–122 (2012).

    Article  Google Scholar 

  80. Tan, J., Zuniga, C. & Zengler, K. Unraveling interactions in microbial communities — from co-cultures to microbiomes. J. Microbiol. 53, 295–305 (2015).

    Article  PubMed  Google Scholar 

  81. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mallick, H. et al. Experimental design and quantitative analysis of microbial community multiomics. Genome Biol. 18, 228 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Durot, M., Bourguignon, P. & Schachter, V. Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol. Rev. 33, 164–190 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Bordbar, A., Monk, J. M., King, Z. A. & Palsson, B. O. Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 15, 107–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Shoaie, S. et al. Quantifying diet-induced metabolic changes of the resource. Cell Metab. 22, 320–331 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Song, H.-S., Cannon, W., Beliaev, A. & Konopka, A. Mathematical modeling of microbial community dynamics: A methodological review. Processes 2, 711–752 (2014).

    Article  Google Scholar 

  90. Xiao, Y. et al. Mapping the ecological networks of microbial communities. Nat. Commun. 8, 2042 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. An, G., Mi, Q., Dutta-Moscato, J. & Vodovotz, Y. Agent-based models in translational systems biology. Wiley Interdiscip. Rev. Syst. Biol. Med. 1, 159–171 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kaplan, H. & Hutkins, R. W. Metabolism of fructooligosaccharides by Lactobacillus paracasei 1195. Appl. Environ. Microbiol. 69, 2217–2222 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Thakur, K., Tomar, S. K. & De, S. Lactic acid bacteria as a cell factory for riboflavin production. Microb. Biotechnol. 9, 441–451 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Terwilliger, A. et al. Bacillus anthracis overcomes an amino acid auxotrophy by cleaving host serum proteins. J. Bacteriol. 197, 2400–2411 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the authors’ laboratory was supported in part by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under award number AR071731. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Work in the authors’ laboratory was also supported by the National Science Foundation under grant number 1332344 and the US Department of Energy, Office of Science, Office of Biological & Environmental Research Awards DE-SC0012586, DE-SC0012658 and DE-SC0018344.

Reviewer information

Nature Reviews Microbiology thanks Felix Sommer, Jan Roelof van der Meer and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

K.Z. and L.S.Z. researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Karsten Zengler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zengler, K., Zaramela, L.S. The social network of microorganisms — how auxotrophies shape complex communities. Nat Rev Microbiol 16, 383–390 (2018). https://doi.org/10.1038/s41579-018-0004-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-018-0004-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing