Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The pan-immune system of bacteria: antiviral defence as a community resource

Abstract

Viruses and their hosts are engaged in a constant arms race leading to the evolution of antiviral defence mechanisms. Recent studies have revealed that the immune arsenal of bacteria against bacteriophages is much more diverse than previously envisioned. These discoveries have led to seemingly contradictory observations: on one hand, individual microorganisms often encode multiple distinct defence systems, some of which are acquired by horizontal gene transfer, alluding to their fitness benefit. On the other hand, defence systems are frequently lost from prokaryotic genomes on short evolutionary time scales, suggesting that they impose a fitness cost. In this Perspective article, we present the ‘pan-immune system’ model in which we suggest that, although a single strain cannot carry all possible defence systems owing to their burden on fitness, it can employ horizontal gene transfer to access immune defence mechanisms encoded by closely related strains. Thus, the ‘effective’ immune system is not the one encoded by the genome of a single microorganism but rather by its pan-genome, comprising the sum of all immune systems available for a microorganism to horizontally acquire and use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antiviral defence systems in bacteria.
Fig. 2: Closely related bacterial strains encode diverse defence systems.
Fig. 3: The pan-immune system model.

Similar content being viewed by others

References

  1. Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife 4, e08490 (2015).

    Article  PubMed Central  Google Scholar 

  2. Touchon, M., Bernheim, A. & Rocha, E. P. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 10, 2744–2754 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koonin, E. V., Senkevich, T. G. & Dolja, V. V. The ancient virus world and evolution of cells. Biol. Direct 1, 29 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kronheim, S. et al. A chemical defence against phage infection. Nature 564, 283–286 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Niewoehner, O. et al. Type III CRISPR–Cas systems generate cyclic oligoadenylate second messengers to activate Csm6 RNases. Nature 548, 543–548 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Kazlauskiene, M., Kostiuk, G., Venclovas, C., Tamulaitis, G. & Siksnys, V. A cyclic oligonucleotide signaling pathway in type III CRISPR–Cas systems. Science 357, 605–609 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koonin, E. V., Makarova, K. S. & Wolf, Y. I. Evolutionary genomics of defense systems in archaea and bacteria. Annu. Rev. Microbiol. 71, 233–261 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Houte, S., Buckling, A. & Westra, E. R. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev. 80, 745–763 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rostøl, J. T. & Marraffini, L. (Ph)ighting phages: how bacteria resist their parasites. Cell Host Microbe 25, 184–194 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dy, R. L., Richter, C., Salmond, G. P. C. & Fineran, P. C. Remarkable mechanisms in microbes to resist phage infections. Annu. Rev. Virol. 1, 307–331 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Borges, A. L., Davidson, A. R. & Bondy-denomy, J. The discovery, mechanisms, and evolutionary impact of anti-CRISPRs. Annu. Rev. Virol. 4, 37–59 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Samson, J. E., Magadán, A. H., Sabri, M. & Moineau, S. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11, 675–687 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Oliveira, P. H., Touchon, M. & Rocha, E. P. C. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res. 42, 10618–10631 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hille, F. et al. The biology of CRISPR–Cas: backward and forward. Cell 172, 1239–1259 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Tock, M. R. & Dryden, D. T. F. The biology of restriction and anti-restriction. Curr. Opin. Microbiol. 8, 466–472 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, L. et al. Phosphorothioation of DNA in bacteria by dnd genes. Nat. Chem. Biol. 3, 709–710 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Thiaville, J. J. et al. Novel genomic island modifies DNA with 7-deazaguanine derivatives. Proc. Natl Acad. Sci. USA 113, E1452–E1459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goldfarb, T. et al. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 34, 169–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Ofir, G. et al. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat. Microbiol. 3, 90–98 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Amitai, G. & Sorek, R. CRISPR–Cas adaptation: new insights into the mechanism of action. Nat. Rev. Microbiol. 14, 67–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Makarova, K. S. et al. An updated evolutionary classification of CRISPR–Cas systems. Nat. Rev. Microbiol. 13, 722–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Classification and nomenclature of CRISPR–Cas systems: where from here? CRISPR J. 1, 325–336 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Malina, A. et al. PAM multiplicity marks genomic target sites as inhibitory to CRISPR–Cas9 editing. Nat. Commun. 6, 10124 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Hegge, J. W., Swarts, D. C. & Van Der Oost, J. Prokaryotic argonaute proteins: novel genome-editing tools? Nat. Rev. Microbiol. 16, 5–11 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Swarts, D. C. et al. DNA-guided DNA interference by a prokaryotic argonaute. Nature 507, 258–261 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bingham, R., Ekunwe, S. I. N., Falk, S., Snyder, L. & Kleanthous, C. The major head protein of bacteriophage T4 binds specifically to elongation factor Tu. J. Biol. Chem. 275, 23219–23226 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Kaufmann, G. Anticodon nucleases. Trends Biochem. Sci. 25, 70–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Durmaz, E. & Klaenhammer, T. R. Abortive phage resistance mechanism AbiZ speeds the lysis clock to cause premature lysis of phage-infected Lactococcus lactis. J. Bacteriol. 189, 1417–1425 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Chopin, M. C., Chopin, A. & Bidnenko, E. Phage abortive infection in lactococci: variations on a theme. Curr. Opin. Microbiol. 8, 473–479 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Depardieu, F. et al. A eukaryotic-like serine/threonine kinase protects staphylococci against phages. Cell Host Microbe 20, 471–481 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Harms, A., Brodersen, D. E., Mitarai, N. & Gerdes, K. Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol. Cell 70, 768–784 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Cohen, D. et al. Cyclic GMP–AMP signalling protects bacteria against viral infection. Nature https://doi.org/10.1038/s41586-019-1605-5 (2019).

  35. Bair, C. L. & Black, L. W. A type IV modification dependent restriction nuclease that targets glucosylated hydroxymethyl cytosine modified DNAs. J. Mol. Biol. 366, 768–778 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Bryson, A. et al. Covalent modification of bacteriophage T4 DNA inhibits CRISPR–Cas9. mBio 6, e00648 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Pawluk, A., Davidson, A. R. & Maxwell, K. L. Anti-CRISPR: discovery, mechanism and function. Nat. Rev. Microbiol. 16, 12–17 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Knott, G. J. et al. Broad-spectrum enzymatic inhibition of CRISPR-Cas12a. Nat. Struct. Mol. Biol. 26, 315–321 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dong, L. et al. An anti-CRISPR protein disables type V Cas12a by acetylation. Nat. Struct. Mol. Biol. 26, 308–314 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Bair, C. L., Rifat, D. & Black, L. W. Exclusion of glucosyl-hydroxymethylcytosine DNA containing bacteriophages is overcome by the injected protein inhibitor IPI*. J. Mol. Biol. 366, 779–789 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Iida, S., Streiff, M. B., Bickle, T. A. & Arber, W. Two DNA antirestriction systems of bacteriophage P1, darA, and darB: characterization of darA-phages. Virology 157, 156–166 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. Godde, J. S. & Bickerton, A. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J. Mol. Evol. 62, 718–729 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res. 41, 4360–4377 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peters, J. E., Makarova, K. S., Shmakov, S. & Koonin, E. V. Recruitment of CRISPR–Cas systems by Tn7-like transposons. Proc. Natl Acad. Sci. USA. 114, E7358–E7366 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seed, K. D., Lazinski, D. W., Calderwood, S. B. & Camilli, A. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494, 489–491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Faure, G. et al. CRISPR–Cas in mobile genetic elements: counter-defence and beyond. Nat. Rev. Microbiol. 17, 513–525 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Makarova, K. S., Wolf, Y. I., Snir, S. & Koonin, E. V. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J. Bacteriol. 193, 6039–6056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stern, A., Keren, L., Wurtzel, O., Amitai, G. & Sorek, R. Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet. 26, 335–340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Heussler, G. E. & O’Toole, G. A. Friendly fire: biological functions and consequences of chromosomal-targeting by CRISPR–Cas systems. J. Bacteriol. 198, 1481–1486 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vercoe, R. B. et al. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLOS Genet. 9, e1003454 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cui, L. & Bikard, D. Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res. 44, 4243–4251 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pleška, M. et al. Bacterial autoimmunity due to a restriction-modification system. Curr. Biol. 26, 404–409 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Berngruber, T. W., Lion, S. & Gandon, S. Evolution of suicide as a defence strategy against pathogens in a spatially structured environment. Ecol. Lett. 16, 446–453 (2013).

    Article  PubMed  Google Scholar 

  55. Seidel, R., Bloom, J. G. P., Dekker, C. & Szczelkun, M. D. Motor step size and ATP coupling efficiency of the dsDNA translocase EcoR124I. EMBO J. 27, 1388–1398 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vale, P. F. et al. Costs of CRISPR–Cas-mediated resistance in Streptococcus thermophilus. Proc. Biol. Sci. 282, 20151270 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang, W. et al. Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids. PLOS Genet. 9, e1003844 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bikard, D., Hatoum-Aslan, A., Mucida, D. & Marraffini, L. A. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12, 177–186 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Puigbò, P., Lobkovsky, A. E., Kristensen, D. M., Wolf, Y. I. & Koonin, E. V. Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes. BMC Biol. 12, 66 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Puigbò, P., Makarova, K. S., Kristensen, D. M., Wolf, Y. I. & Koonin, E. V. Reconstruction of the evolution of microbial defense systems. BMC Evol. Biol. 17, 94 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Childs, L. M., England, W. E., Young, M. J., Weitz, J. S. & Whitaker, R. J. CRISPR-induced distributed immunity in microbial populations. PLOS ONE 9, e101710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Levin, B. R., Moineau, S., Bushman, M. & Barrangou, R. The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity. PLOS Genet. 9, e1003312 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Houte, S. van et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532, 385–388 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hyman, P. & Abedon, S. T. Bacteriophage host range and bacterial resistance. Adv. Appl. Microbiol. 70, 217–248 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. de Jonge, P. A., Nobrega, F. L., Brouns, S. J. J. & Dutilh, B. E. Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol. 27, 51–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Miller, E. S. et al. Bacteriophage T4 genome. Microbiol. Mol. Biol. Rev. 67, 86–156 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Molineux, I. in TheBacteriophagesVol. 2 Ch. 20 (ed. Calender, R.) (Oxford University Press, 2005).

  68. Levy, A. et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520, 505–510 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bernheim, A. et al. Inhibition of NHEJ repair by type II-A CRISPR–Cas systems. Nat. Commun. 8, 170647 (2017).

    Article  CAS  Google Scholar 

  70. Bernheim, A., Bikard, D., Touchon, M. & Rocha, E. P. C. A matter of background: DNA repair pathways as a possible cause for the sparse distribution of CRISPR–Cas systems in bacteria. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180088 (2019).

    Article  CAS  Google Scholar 

  71. Dupuis, M.-È., Villion, M., Magadán, A. H. & Moineau, S. CRISPR–Cas and restriction-modification systems are compatible and increase phage resistance. Nat. Commun. 4, 2087 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Hynes, A. P., Villion, M. & Moineau, S. Adaptation in bacterial CRISPR–Cas immunity can be driven by defective phages. Nat. Commun. 5, 4399 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Silas, S. et al. Type III CRISPR–Cas systems can provide redundancy to counteract viral escape from type I systems. eLife 6, e27601 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Amitai, G. & Sorek, R. Intracellular signaling in CRISPR–Cas defense. Science 357, 550–551 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Rehman, S., Ali, Z., Khan, M., Bostan, N. & Naseem, S. The dawn of phage therapy. Rev. Med. Virol. 29, e2041 (2019).

    Article  PubMed  Google Scholar 

  76. Abedon, S. T., García, P., Mullany, P. & Aminov, R. Editorial: phage therapy: past, present and future. Front. Microbiol. 8, 981 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Oliveira, P. H., Touchon, M., Cury, J. & Rocha, E. P. C. The chromosomal organization of horizontal gene transfer in bacteria. Nat. Commun. 8, 841 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Couvin, D. et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46, W246–W251 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Oliveira, P. H., Touchon, M. & Rocha, E. P. C. Regulation of genetic flux between bacteria by restriction modification systems. Proc. Natl Acad. Sci. USA. 113, 5658–5663 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Doron and A. Millman for their help in the analysis presented in Box 1 and Figure 2, M. Voichek and N. Tal for their helpful comments on the figures in this study, and J. Cury and the Sorek laboratory members for comments on earlier versions of this manuscript. A.B. is the recipient of a European Molecular Biology Organization (EMBO) Long Term Fellowship (EMBO ALTF 186-2018). R.S. was supported, in part, by the Israel Science Foundation (personal grant 1360/16), the European Research Council (grant ERC-CoG 681203), the German Research Council (DFG) priority programme SPP 2002 (grant SO 1611/1-1), the Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine and the Knell Family Center for Microbiology.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Rotem Sorek.

Ethics declarations

Competing interests

R.S. is a scientific cofounder and consultant of BiomX Ltd, Pantheon Ltd and EcoPhage Ltd. All other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks E. Koonin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernheim, A., Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat Rev Microbiol 18, 113–119 (2020). https://doi.org/10.1038/s41579-019-0278-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-019-0278-2

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology