Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Actin–microtubule crosstalk in cell biology

Abstract

The cytoskeleton and its components — actin, microtubules and intermediate filaments — have been studied for decades, and multiple roles of the individual cytoskeletal substructures are now well established. However, in recent years it has become apparent that the three cytoskeletal elements also engage in extensive crosstalk that is important for core biological processes. Actin–microtubule crosstalk is particularly important for the regulation of cell shape and polarity during cell migration and division and the establishment of neuronal and epithelial cell shape and function. This crosstalk engages different cytoskeletal regulators and encompasses various physical interactions, such as crosslinking, anchoring and mechanical support. Thus, the cytoskeleton should be considered not as a collection of individual parts but rather as a unified system in which subcomponents co-regulate each other to exert their functions in a precise and highly adaptable manner.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of actin–microtubule crosstalk.
Fig. 2: Actin–microtubule crosstalk in cell migration.
Fig. 3: Actin–microtubule crosstalk in neuronal cells.
Fig. 4: Actin–microtubule crosstalk in cell polarity.
Fig. 5: Actin–microtubule crosstalk in cell division.

Similar content being viewed by others

References

  1. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    CAS  PubMed  Google Scholar 

  2. Blanchoin, L., Boujemaa-Paterski, R., Sykes, C. & Plastino, J. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94, 235–263 (2014).

    CAS  PubMed  Google Scholar 

  3. Suozzi, K. C., Wu, X. & Fuchs, E. Spectraplakins: master orchestrators of cytoskeletal dynamics. J. Cell Biol. 197, 465–475 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Applewhite, D. A., Grode, K. D., Duncan, M. C. & Rogers, S. L. The actin-microtubule cross-linking activity of Drosophila Short stop is regulated by intramolecular inhibition. Mol. Biol. Cell 24, 2885–2893 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Preciado Lopez, M. et al. Actin-microtubule coordination at growing microtubule ends. Nat. Commun. 5, 4778 (2014). This paper reports the first in vitro reconstitution of actin–microtubule crosstalk mediated by crosslinking proteins localized to growing microtubule plus ends.

    PubMed  Google Scholar 

  6. Janson, M. E., de Dood, M. E. & Dogterom, M. Dynamic instability of microtubules is regulated by force. J. Cell Biol. 161, 1029–1034 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Clark, A. G., Dierkes, K. & Paluch, E. K. Monitoring actin cortex thickness in live cells. Biophys. J. 105, 570–580 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bradke, F. & Dotti, C. G. The role of local actin instability in axon formation. Science 283, 1931–1934 (1999).

    CAS  PubMed  Google Scholar 

  9. Lancaster, O. M. et al. Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation. Dev. Cell 25, 270–283 (2013).

    CAS  PubMed  Google Scholar 

  10. Luxenburg, C., Pasolli, H. A., Williams, S. E. & Fuchs, E. Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation. Nat. Cell Biol. 13, 203–214 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chanet, S., Sharan, R., Khan, Z. & Martin, A. C. Myosin 2-induced mitotic rounding enables columnar epithelial cells to interpret cortical spindle positioning cues. Curr. Biol. 27, 3350–3358 (2017). This paper uses live-cell imaging of the first mitotic divisions of the early Drosophila melanogaster embryo to show that myosin-II-driven cell rounding is necessary for epithelial cells to orient their spindles in the plane of the epithelium instead of along the long apico-basal axis.

    CAS  PubMed  Google Scholar 

  12. Basu, R. & Chang, F. Shaping the actin cytoskeleton using microtubule tips. Curr. Opin. Cell Biol. 19, 88–94 (2007).

    CAS  PubMed  Google Scholar 

  13. Wen, Y. et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat. Cell Biol. 6, 820–830 (2004).

    CAS  PubMed  Google Scholar 

  14. Okada, K. et al. Adenomatous polyposis coli protein nucleates actin assembly and synergizes with the formin mDia1. J. Cell Biol. 189, 1087–1096 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Henty-Ridilla, J. L., Rankova, A., Eskin, J. A., Kenny, K. & Goode, B. L. Accelerated actin filament polymerization from microtubule plus ends. Science 352, 1004–1009 (2016). This paper demonstrates the first in vitro reconstitution of actin filament polymerization from microtubule plus ends mediated by a complex of the microtubule +TIP protein CLIP170 and the actin elongation factor mDia1.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lewkowicz, E. et al. The microtubule-binding protein CLIP-170 coordinates mDia1 and actin reorganization during CR3-mediated phagocytosis. J. Cell Biol. 183, 1287–1298 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gaillard, J. et al. Differential interactions of the formins INF2, mDia1, and mDia2 with microtubules. Mol. Biol. Cell 22, 4575–4587 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartolini, F. et al. An mDia1-INF2 formin activation cascade facilitated by IQGAP1 regulates stable microtubules in migrating cells. Mol. Biol. Cell 27, 1797–1808 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Roth-Johnson, E. A., Vizcarra, C. L., Bois, J. S. & Quinlan, M. E. Interaction between microtubules and the Drosophila formin Cappuccino and its effect on actin assembly. J. Biol. Chem. 289, 4395–4404 (2014).

    CAS  PubMed  Google Scholar 

  20. Szikora, S. et al. The formin DAAM is required for coordination of the actin and microtubule cytoskeleton in axonal growth cones. J. Cell Sci. 130, 2506–2519 (2017).

    CAS  PubMed  Google Scholar 

  21. Wojnacki, J., Quassollo, G., Marzolo, M. P. & Caceres, A. Rho GTPases at the crossroad of signaling networks in mammals: impact of Rho-GTPases on microtubule organization and dynamics. Small GTPases 5, e28430 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Farina, F. et al. The centrosome is an actin-organizing centre. Nat. Cell Biol. 18, 65–75 (2016).

    CAS  PubMed  Google Scholar 

  23. Dogterom, M. & Yurke, B. Measurement of the force-velocity relation for growing microtubules. Science 278, 856–860 (1997).

    CAS  PubMed  Google Scholar 

  24. Ingber, D. E. Tensegrity, I. Cell structure and hierarchical systems biology. J. Cell Sci. 116, 1157–1173 (2003).

    CAS  PubMed  Google Scholar 

  25. Brangwynne, C. P. et al. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol. 173, 733–741 (2006). This paper uses an elegant combination of quantitative live-cell imaging and theoretical modelling to explain how microtubules are reinforced against compressive loads owing to mechanical coupling to the surrounding (actin) cytoskeleton.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bouchet, B. P. & Akhmanova, A. Microtubules in 3D cell motility. J. Cell Sci. 130, 39–50 (2017).

    CAS  PubMed  Google Scholar 

  27. Lu, W., Fox, P., Lakonishok, M., Davidson, M. W. & Gelfand, V. I. Initial neurite outgrowth in Drosophila neurons is driven by kinesin-powered microtubule sliding. Curr. Biol. 23, 1018–1023 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Winding, M., Kelliher, M. T., Lu, W., Wildonger, J. & Gelfand, V. I. Role of kinesin-1-based microtubule sliding in Drosophila nervous system development. Proc. Natl Acad. Sci. USA 113, E4985–E4994 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mogessie, B., Roth, D., Rahil, Z. & Straube, A. A novel isoform of MAP4 organises the paraxial microtubule array required for muscle cell differentiation. eLife 4, e05697 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Jolly, A. L. et al. Kinesin-1 heavy chain mediates microtubule sliding to drive changes in cell shape. Proc. Natl Acad. Sci. USA 107, 12151–12156 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gardel, M. L., Schneider, I. C., Aratyn-Schaus, Y. & Waterman, C. M. Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell Dev. Biol. 26, 315–333 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Oakes, P. W., Beckham, Y., Stricker, J. & Gardel, M. L. Tension is required but not sufficient for focal adhesion maturation without a stress fiber template. J. Cell Biol. 196, 363–374 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Paul, N. R., Jacquemet, G. & Caswell, P. T. Endocytic trafficking of integrins in cell migration. Curr. Biol. 25, R1092–R1105 (2015).

    CAS  PubMed  Google Scholar 

  34. Schuler, M. H. et al. Miro1-mediated mitochondrial positioning shapes intracellular energy gradients required for cell migration. Mol. Biol. Cell 28, 2159–2169 (2017). This paper shows that microtubules serve to position mitochondria near the cell periphery, where they provide a localized source of energy to power actin-driven cell movements.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Etienne-Manneville, S. Microtubules in cell migration. Annu. Rev. Cell Dev. Biol. 29, 471–499 (2013).

    CAS  PubMed  Google Scholar 

  36. Friedl, P. & Wolf, K. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188, 11–19 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tomasek, J. J. & Hay, E. D. Analysis of the role of microfilaments and microtubules in acquisition of bipolarity and elongation of fibroblasts in hydrated collagen gels. J. Cell Biol. 99, 536–549 (1984).

    CAS  PubMed  Google Scholar 

  38. Jayatilaka, H. et al. EB1 and cytoplasmic dynein mediate protrusion dynamics for efficient 3-dimensional cell migration. FASEB J. 32, 1207–1221 (2017).

    PubMed Central  Google Scholar 

  39. Bouchet, B. P. et al. Mesenchymal cell invasion requires cooperative regulation of persistent microtubule growth by SLAIN2 and CLASP1. Dev. Cell 39, 708–723 (2016). This paper demonstrates that persistent microtubule growth maintained by the +TIP proteins SLAIN2 and CLASP1 is required for cell migration in 3D matrices but not on 2D surfaces.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Charras, G. & Sahai, E. Physical influences of the extracellular environment on cell migration. Nat. Rev. Mol. Cell Biol. 15, 813–824 (2014).

    CAS  PubMed  Google Scholar 

  41. Huda, S. et al. Microtubule guidance tested through controlled cell geometry. J. Cell Sci. 125, 5790–5799 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaverina, I., Rottner, K. & Small, J. V. Targeting, capture, and stabilization of microtubules at early focal adhesions. J. Cell Biol. 142, 181–190 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaverina, I., Krylyshkina, O. & Small, J. V. Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J. Cell Biol. 146, 1033–1044 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Krylyshkina, O. et al. Nanometer targeting of microtubules to focal adhesions. J. Cell Biol. 161, 853–859 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Stehbens, S. J. et al. CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover. Nat. Cell Biol. 16, 561–573 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu, X. et al. N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods. J. Cell Biol. 199, 527–544 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rooney, C. et al. The Rac activator STEF (Tiam2) regulates cell migration by microtubule-mediated focal adhesion disassembly. EMBO Rep. 11, 292–298 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nalbant, P., Chang, Y. C., Birkenfeld, J., Chang, Z. F. & Bokoch, G. M. Guanine nucleotide exchange factor-H1 regulates cell migration via localized activation of RhoA at the leading edge. Mol. Biol. Cell 20, 4070–4082 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ezratty, E. J., Bertaux, C., Marcantonio, E. E. & Gundersen, G. G. Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J. Cell Biol. 187, 733–747 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yue, J. et al. Microtubules regulate focal adhesion dynamics through MAP4K4. Dev. Cell 31, 572–585 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ning, W. et al. The CAMSAP3-ACF7 complex couples noncentrosomal microtubules with actin filaments to coordinate their dynamics. Dev. Cell 39, 61–74 (2016).

    CAS  PubMed  Google Scholar 

  52. Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A. & Fuchs, E. ACF7: an essential integrator of microtubule dynamics. Cell 115, 343–354 (2003).

    CAS  PubMed  Google Scholar 

  53. Wu, X., Kodama, A. & Fuchs, E. ACF7 regulates cytoskeletal-focal adhesion dynamics and migration and has ATPase activity. Cell 135, 137–148 (2008). This pioneering study reports an essential function of actin–microtubule crosslinking by the spectraplakin ACF7 for directional cell migration in the skin epidermis.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yue, J. et al. In vivo epidermal migration requires focal adhesion targeting of ACF7. Nat. Commun. 7, 11692 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Stroud, M. J. et al. GAS2-like proteins mediate communication between microtubules and actin through interactions with end-binding proteins. J. Cell Sci. 127, 2672–2682 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jiang, K. et al. A Proteome-wide screen for mammalian SxIP motif-containing microtubule plus-end tracking proteins. Curr. Biol. 22, 1800–1807 (2012). This paper reports a proteome-wide search for mammalian +TIP proteins containing the core SxIP motif that recognizes EB proteins, revealing several new +TIPs that link microtubule plus ends to the actin cortex.

    CAS  PubMed  Google Scholar 

  57. Girdler, G. C., Applewhite, D. A., Perry, W. M., Rogers, S. L. & Roper, K. The Gas2 family protein Pigs is a microtubule +TIP that affects cytoskeleton organisation. J. Cell Sci. 129, 121–134 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bouchet, B. P. et al. Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions. eLife 5, e18124 (2016). This paper identifies the molecular mechanisms that mediate the selective capture and stabilization of microtubules at the cell cortex in the vicinity of integrin-based adhesions to the ECM.

    PubMed  PubMed Central  Google Scholar 

  59. Byron, A. et al. A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting. Nat. Commun. 6, 6135 (2015). This study uses an elegant combination of proteomics and live-cell imaging of microtubule–integrin interactions on micropatterned surfaces to demonstrate that active integrin complexes are specifically enriched for proteins associated with microtubule capture and stabilization.

    CAS  PubMed  Google Scholar 

  60. Mimori-Kiyosue, Y. et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J. Cell Biol. 168, 141–153 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kumar, P. et al. GSK3beta phosphorylation modulates CLASP-microtubule association and lamella microtubule attachment. J. Cell Biol. 184, 895–908 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zaoui, K., Benseddik, K., Daou, P., Salaun, D. & Badache, A. ErbB2 receptor controls microtubule capture by recruiting ACF7 to the plasma membrane of migrating cells. Proc. Natl Acad. Sci. USA 107, 18517–18522 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Margaron, Y., Fradet, N. & Cote, J. F. ELMO recruits actin cross-linking family 7 (ACF7) at the cell membrane for microtubule capture and stabilization of cellular protrusions. J. Biol. Chem. 288, 1184–1199 (2013).

    CAS  PubMed  Google Scholar 

  64. Daou, P. et al. Essential and nonredundant roles for Diaphanous formins in cortical microtubule capture and directed cell migration. Mol. Biol. Cell 25, 658–668 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Lansbergen, G. et al. CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5beta. Dev. Cell 11, 21–32 (2006).

    CAS  PubMed  Google Scholar 

  66. Palazzo, A. F., Eng, C. H., Schlaepfer, D. D., Marcantonio, E. E. & Gundersen, G. G. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 303, 836–839 (2004).

    CAS  PubMed  Google Scholar 

  67. Deakin, N. O. & Turner, C. E. Paxillin inhibits HDAC6 to regulate microtubule acetylation, Golgi structure, and polarized migration. J. Cell Biol. 206, 395–413 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Salmon, W. C., Adams, M. C. & Waterman-Storer, C. M. Dual-wavelength fluorescent speckle microscopy reveals coupling of microtubule and actin movements in migrating cells. J. Cell Biol. 158, 31–37 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Even-Ram, S. et al. Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nat. Cell Biol. 9, 299–309 (2007).

    CAS  PubMed  Google Scholar 

  70. Waterman-Storer, C. M. & Salmon, E. D. Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J. Cell Biol. 139, 417–434 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gupton, S. L., Salmon, W. C. & Waterman-Storer, C. M. Converging populations of f-actin promote breakage of associated microtubules to spatially regulate microtubule turnover in migrating cells. Curr. Biol. 12, 1891–1899 (2002).

    CAS  PubMed  Google Scholar 

  72. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. Adenomatous polyposis coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells. J. Cell Biol. 148, 505–518 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Breitsprecher, D. et al. Rocket launcher mechanism of collaborative actin assembly defined by single-molecule imaging. Science 336, 1164–1168 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Campellone, K. G., Webb, N. J., Znameroski, E. A. & Welch, M. D. WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell 134, 148–161 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nejedla, M. et al. Profilin connects actin assembly with microtubule dynamics. Mol. Biol. Cell 27, 2381–2393 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Henty-Ridilla, J. L., Juanes, M. A. & Goode, B. L. Profilin directly promotes microtubule growth through residues mutated in amyotrophic lateral sclerosis. Curr. Biol. 27, 3535–3543 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Waterman-Storer, C. M., Worthylake, R. A., Liu, B. P., Burridge, K. & Salmon, E. D. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nat. Cell Biol. 1, 45–50 (1999).

    CAS  PubMed  Google Scholar 

  78. Lyle, K. S., Corleto, J. A. & Wittmann, T. Microtubule dynamics regulation contributes to endothelial morphogenesis. Bioarchitecture 2, 220–227 (2012).

    PubMed  PubMed Central  Google Scholar 

  79. Gierke, S. & Wittmann, T. EB1-recruited microtubule +TIP complexes coordinate protrusion dynamics during 3D epithelial remodeling. Curr. Biol. 22, 753–762 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Redd, M. J., Kelly, G., Dunn, G., Way, M. & Martin, P. Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation. Cell. Motil. Cytoskeleton 63, 415–422 (2006).

    CAS  PubMed  Google Scholar 

  81. Yoo, S. K. et al. The role of microtubules in neutrophil polarity and migration in live zebrafish. J. Cell Sci. 125, 5702–5710 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sugiyama, T., Pramanik, M. K. & Yumura, S. Microtubule-mediated inositol lipid signaling plays critical roles in regulation of blebbing. PLOS ONE 10, e0137032 (2015).

    PubMed  PubMed Central  Google Scholar 

  83. Conde, C. & Caceres, A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat. Rev. Neurosci. 10, 319–332 (2009).

    CAS  PubMed  Google Scholar 

  84. Xu, K., Zhong, G. & Zhuang, X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013).

    CAS  PubMed  Google Scholar 

  85. Shirao, T. & Gonzalez-Billault, C. Actin filaments and microtubules in dendritic spines. J. Neurochem. 126, 155–164 (2013).

    CAS  PubMed  Google Scholar 

  86. Koser, D. E. et al. Mechanosensing is critical for axon growth in the developing brain. Nat. Neurosci. 19, 1592–1598 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Trivedi, N. et al. Drebrin-mediated microtubule-actomyosin coupling steers cerebellar granule neuron nucleokinesis and migration pathway selection. Nat. Commun. 8, 14484 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Coles, C. H. & Bradke, F. Coordinating neuronal actin-microtubule dynamics. Curr. Biol. 25, R677–R691 (2015).

    CAS  PubMed  Google Scholar 

  89. Cammarata, G. M., Bearce, E. A. & Lowery, L. A. Cytoskeletal social networking in the growth cone: how +TIPs mediate microtubule-actin cross-linking to drive axon outgrowth and guidance. Cytoskeleton 73, 461–476 (2016).

    CAS  PubMed  Google Scholar 

  90. Chia, J. X., Efimova, N. & Svitkina, T. M. Neurite outgrowth is driven by actin polymerization even in the presence of actin polymerization inhibitors. Mol. Biol. Cell 27, 3687–3790 (2016).

    Google Scholar 

  91. Geraldo, S., Khanzada, U. K., Parsons, M., Chilton, J. K. & Gordon-Weeks, P. R. Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nat. Cell Biol. 10, 1181–1189 (2008).

    CAS  PubMed  Google Scholar 

  92. Elie, A. et al. Tau co-organizes dynamic microtubule and actin networks. Sci. Rep. 5, 9964 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Worth, D. C., Daly, C. N., Geraldo, S., Oozeer, F. & Gordon-Weeks, P. R. Drebrin contains a cryptic F-actin-bundling activity regulated by Cdk5 phosphorylation. J. Cell Biol. 202, 793–806 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. van Haren, J. et al. Mammalian navigators are microtubule plus-end tracking proteins that can reorganize the cytoskeleton to induce neurite-like extensions. Cell. Motil. Cytoskeleton 66, 824–838 (2009).

    PubMed  Google Scholar 

  95. Schmidt, K. L. et al. The cell migration molecule UNC-53/NAV2 is linked to the ARP2/3 complex by ABI-1. Development 136, 563–574 (2009).

    CAS  PubMed  Google Scholar 

  96. Stringham, E. G. & Schmidt, K. L. Navigating the cell: UNC-53 and the navigators, a family of cytoskeletal regulators with multiple roles in cell migration, outgrowth and trafficking. Cell Adh. Migr. 3, 342–346 (2009).

    PubMed  PubMed Central  Google Scholar 

  97. Flynn, K. C. et al. ADF/cofilin-mediated actin retrograde flow directs neurite formation in the developing brain. Neuron 76, 1091–1107 (2012).

    CAS  PubMed  Google Scholar 

  98. Flynn, K. C. The cytoskeleton and neurite initiation. Bioarchitecture 3, 86–109 (2013).

    PubMed  PubMed Central  Google Scholar 

  99. Witte, H., Neukirchen, D. & Bradke, F. Microtubule stabilization specifies initial neuronal polarization. J. Cell Biol. 180, 619–632 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bradke, F. & Dotti, C. G. Neuronal polarity: vectorial cytoplasmic flow precedes axon formation. Neuron 19, 1175–1186 (1997).

    CAS  PubMed  Google Scholar 

  101. Winans, A. M., Collins, S. R. & Meyer, T. Waves of actin and microtubule polymerization drive microtubule-based transport and neurite growth before single axon formation. eLife 5, e12387 (2016).

    PubMed  PubMed Central  Google Scholar 

  102. Zhou, F. Q., Waterman-Storer, C. M. & Cohan, C. S. Focal loss of actin bundles causes microtubule redistribution and growth cone turning. J. Cell Biol. 157, 839–849 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Burnette, D. T., Schaefer, A. W., Ji, L., Danuser, G. & Forscher, P. Filopodial actin bundles are not necessary for microtubule advance into the peripheral domain of Aplysia neuronal growth cones. Nat. Cell Biol. 9, 1360–1369 (2007).

    CAS  PubMed  Google Scholar 

  104. Sanchez-Soriano, N. et al. Mouse ACF7 and drosophila short stop modulate filopodia formation and microtubule organisation during neuronal growth. J. Cell Sci. 122, 2534–2542 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Alves-Silva, J. et al. Spectraplakins promote microtubule-mediated axonal growth by functioning as structural microtubule-associated proteins and EB1-dependent +TIPs (tip interacting proteins). J. Neurosci. 32, 9143–9158 (2012). This paper establishes that actin–microtubule crosslinking at the lattice and the plus ends of microtubules by spectraplakins is essential for axonal outgrowth.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ahmad, F. J. & Baas, P. W. Microtubules released from the neuronal centrosome are transported into the axon. J. Cell Sci. 108, 2761–2769 (1995).

    CAS  PubMed  Google Scholar 

  107. del Castillo, U., Winding, M., Lu, W. & Gelfand, V. I. Interplay between kinesin-1 and cortical dynein during axonal outgrowth and microtubule organization in Drosophila neurons. eLife 4, e10140 (2015).

    PubMed  PubMed Central  Google Scholar 

  108. Grabham, P. W., Seale, G. E., Bennecib, M., Goldberg, D. J. & Vallee, R. B. Cytoplasmic dynein and LIS1 are required for microtubule advance during growth cone remodeling and fast axonal outgrowth. J. Neurosci. 27, 5823–5834 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Roossien, D. H., Lamoureux, P. & Miller, K. E. Cytoplasmic dynein pushes the cytoskeletal meshwork forward during axonal elongation. J. Cell Sci. 127, 3593–3602 (2014).

    CAS  PubMed  Google Scholar 

  110. Ahmad, F. J. et al. Motor proteins regulate force interactions between microtubules and microfilaments in the axon. Nat. Cell Biol. 2, 276–280 (2000).

    CAS  PubMed  Google Scholar 

  111. Bielas, S. L. et al. Spinophilin facilitates dephosphorylation of doublecortin by PP1 to mediate microtubule bundling at the axonal wrist. Cell 129, 579–591 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Burnette, D. T. et al. Myosin II activity facilitates microtubule bundling in the neuronal growth cone neck. Dev. Cell 15, 163–169 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Qu, Y., Hahn, I., Webb, S. E., Pearce, S. P. & Prokop, A. Periodic actin structures in neuronal axons are required to maintain microtubules. Mol. Biol. Cell 28, 296–308 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Krieg, M. et al. Genetic defects in beta-spectrin and tau sensitize C. elegans axons to movement-induced damage via torque-tension coupling. eLife 6, e20172 (2017). This paper reports an elegant combination of biophysical measurements and high-resolution microscopy in neurons with numerical simulations, showing how the spectrin and microtubule cytoskeletons work in concert to protect axons and dendrites from mechanical stress.

    PubMed  PubMed Central  Google Scholar 

  115. Fan, A., Tofangchi, A., Kandel, M., Popescu, G. & Saif, T. Coupled circumferential and axial tension driven by actin and myosin influences in vivo axon diameter. Sci. Rep. 7, 14188 (2017).

    PubMed  PubMed Central  Google Scholar 

  116. Jaworski, J. et al. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61, 85–100 (2009).

    CAS  PubMed  Google Scholar 

  117. Merriam, E. B. et al. Synaptic regulation of microtubule dynamics in dendritic spines by calcium, F-actin, and drebrin. J. Neurosci. 33, 16471–16482 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Rodriguez-Boulan, E. & Macara, I. G. Organization and execution of the epithelial polarity programme. Nat. Rev. Mol. Cell Biol. 15, 225–242 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sugioka, K. & Sawa, H. Formation and functions of asymmetric microtubule organization in polarized cells. Curr. Opin. Cell Biol. 24, 517–525 (2012).

    CAS  PubMed  Google Scholar 

  120. Reilein, A. & Nelson, W. J. APC is a component of an organizing template for cortical microtubule networks. Nat. Cell Biol. 7, 463–473 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bazellieres, E. et al. Apico-basal elongation requires a drebrin-E-EB3 complex in columnar human epithelial cells. J. Cell Sci. 125, 919–931 (2012).

    CAS  PubMed  Google Scholar 

  122. Gomez, J. M., Chumakova, L., Bulgakova, N. A. & Brown, N. H. Microtubule organization is determined by the shape of epithelial cells. Nat. Commun. 7, 13172 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Nashchekin, D., Fernandes, A. R. & St Johnston, D. Patronin/shot cortical foci assemble the noncentrosomal microtubule array that specifies the Drosophila anterior-posterior axis. Dev. Cell 38, 61–72 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Noordstra, I. et al. Control of apico-basal epithelial polarity by the microtubule minus-end-binding protein CAMSAP3 and spectraplakin ACF7. J. Cell Sci. 129, 4278–4288 (2016).

    CAS  PubMed  Google Scholar 

  125. Toya, M. et al. CAMSAP3 orients the apical-to-basal polarity of microtubule arrays in epithelial cells. Proc. Natl Acad. Sci. USA 113, 332–337 (2016).

    CAS  PubMed  Google Scholar 

  126. Hendershott, M. C. & Vale, R. D. Regulation of microtubule minus-end dynamics by CAMSAPs and Patronin. Proc. Natl Acad. Sci. USA 111, 5860–5865 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Jiang, K. et al. Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Dev. Cell 28, 295–309 (2014).

    CAS  PubMed  Google Scholar 

  128. Khanal, I., Elbediwy, A., Diaz de la Loza Mdel, C., Fletcher, G. C. & Thompson, B. J. Shot and Patronin polarise microtubules to direct membrane traffic and biogenesis of microvilli in epithelia. J. Cell Sci. 129, 2651–2659 (2016). This paper reveals the intricate bidirectional actin–microtubule crosstalk necessary to establish polarization of microtubules and actin microvilli along the apico-basal axis of epithelial cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hotta, A. et al. Laminin-based cell adhesion anchors microtubule plus ends to the epithelial cell basal cortex through LL5alpha/beta. J. Cell Biol. 189, 901–917 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Chausovsky, A., Bershadsky, A. D. & Borisy, G. G. Cadherin-mediated regulation of microtubule dynamics. Nat. Cell Biol. 2, 797–804 (2000).

    CAS  PubMed  Google Scholar 

  131. Waterman-Storer, C. M., Salmon, W. C. & Salmon, E. D. Feedback interactions between cell-cell adherens junctions and cytoskeletal dynamics in newt lung epithelial cells. Mol. Biol. Cell 11, 2471–2483 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Meng, W., Mushika, Y., Ichii, T. & Takeichi, M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell 135, 948–959 (2008).

    CAS  PubMed  Google Scholar 

  133. Ligon, L. A. & Holzbaur, E. L. Microtubules tethered at epithelial cell junctions by dynein facilitate efficient junction assembly. Traffic 8, 808–819 (2007).

    CAS  PubMed  Google Scholar 

  134. Bellett, G. et al. Microtubule plus-end and minus-end capture at adherens junctions is involved in the assembly of apico-basal arrays in polarised epithelial cells. Cell. Motil. Cytoskeleton 66, 893–908 (2009).

    CAS  PubMed  Google Scholar 

  135. Shaw, R. M. et al. Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128, 547–560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Gavilan, M. P. et al. Alpha-catenin-dependent recruitment of the centrosomal protein CAP350 to adherens junctions allows epithelial cells to acquire a columnar shape. PLOS Biol. 13, e1002087 (2015).

    PubMed  PubMed Central  Google Scholar 

  137. Stehbens, S. J. et al. Dynamic microtubules regulate the local concentration of E-cadherin at cell-cell contacts. J. Cell Sci. 119, 1801–1811 (2006).

    CAS  PubMed  Google Scholar 

  138. Shahbazi, M. N. et al. CLASP2 interacts with p120-catenin and governs microtubule dynamics at adherens junctions. J. Cell Biol. 203, 1043–1061 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Tsvetkov, A. S., Samsonov, A., Akhmanova, A., Galjart, N. & Popov, S. V. Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments. Cell. Motil. Cytoskeleton 64, 519–530 (2007).

    CAS  PubMed  Google Scholar 

  140. Karakesisoglou, I., Yang, Y. & Fuchs, E. An epidermal plakin that integrates actin and microtubule networks at cellular junctions. J. Cell Biol. 149, 195–208 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Mary, S. et al. Biogenesis of N-cadherin-dependent cell-cell contacts in living fibroblasts is a microtubule-dependent kinesin-driven mechanism. Mol. Biol. Cell 13, 285–301 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Sumigray, K. D., Foote, H. P. & Lechler, T. Noncentrosomal microtubules and type II myosins potentiate epidermal cell adhesion and barrier formation. J. Cell Biol. 199, 513–525 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Acharya, B. R. et al. KIF17 regulates RhoA-dependent actin remodeling at epithelial cell-cell adhesions. J. Cell Sci. 129, 957–970 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Komarova, Y. A. et al. VE-cadherin signaling induces EB3 phosphorylation to suppress microtubule growth and assemble adherens junctions. Mol. Cell 48, 914–925 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Plestant, C. et al. Adhesive interactions of N-cadherin limit the recruitment of microtubules to cell-cell contacts through organization of actomyosin. J. Cell Sci. 127, 1660–1671 (2014).

    CAS  PubMed  Google Scholar 

  146. Holy, T. E., Dogterom, M., Yurke, B. & Leibler, S. Assembly and positioning of microtubule asters in microfabricated chambers. Proc. Natl Acad. Sci. USA 94, 6228–6231 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Laan, L. et al. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 148, 502–514 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Kimura, K. & Kimura, A. Intracellular organelles mediate cytoplasmic pulling force for centrosome centration in the Caenorhabditis elegans early embryo. Proc. Natl Acad. Sci. USA 108, 137–142 (2011).

    CAS  PubMed  Google Scholar 

  149. Williams, S. E., Ratliff, L. A., Postiglione, M. P., Knoblich, J. A. & Fuchs, E. Par3-mInsc and Galphai3 cooperate to promote oriented epidermal cell divisions through LGN. Nat. Cell Biol. 16, 758–769 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Minc, N., Burgess, D. & Chang, F. Influence of cell geometry on division-plane positioning. Cell 144, 414–426 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Hertwig, O. (ed.) Das problem der Befruchtung and der Isotropie des Eies, eine Theorie der Vererbung 21–23 (Fischer, 1884).

  152. Thery, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 7, 947–953 (2005).

    CAS  PubMed  Google Scholar 

  153. Sandquist, J. C., Kita, A. M. & Bement, W. M. And the dead shall rise: actin and myosin return to the spindle. Dev. Cell 21, 410–419 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. di Pietro, F., Echard, A. & Morin, X. Regulation of mitotic spindle orientation: an integrated view. EMBO Rep. 17, 1106–1130 (2016).

    PubMed  PubMed Central  Google Scholar 

  155. Panousopoulou, E. & Green, J. B. Spindle orientation processes in epithelial growth and organisation. Semin. Cell Dev. Biol. 34, 124–132 (2014).

    PubMed  Google Scholar 

  156. Holubcova, Z., Howard, G. & Schuh, M. Vesicles modulate an actin network for asymmetric spindle positioning. Nat. Cell Biol. 15, 937–947 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Mao, Y. et al. Planar polarization of the atypical myosin Dachs orients cell divisions in Drosophila. Genes Dev. 25, 131–136 (2011).

    CAS  PubMed  Google Scholar 

  158. Machicoane, M. et al. SLK-dependent activation of ERMs controls LGN-NuMA localization and spindle orientation. J. Cell Biol. 205, 791–799 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Solinet, S. et al. The actin-binding ERM protein Moesin binds to and stabilizes microtubules at the cell cortex. J. Cell Biol. 202, 251–260 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kunda, P. & Baum, B. The actin cytoskeleton in spindle assembly and positioning. Trends Cell Biol. 19, 174–179 (2009).

    CAS  PubMed  Google Scholar 

  161. Maier, B., Kirsch, M., Anderhub, S., Zentgraf, H. & Kramer, A. The novel actin/focal adhesion-associated protein MISP is involved in mitotic spindle positioning in human cells. Cell Cycle 12, 1457–1471 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhu, M. et al. MISP is a novel Plk1 substrate required for proper spindle orientation and mitotic progression. J. Cell Biol. 200, 773–787 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Kwon, M., Bagonis, M., Danuser, G. & Pellman, D. Direct microtubule-binding by myosin-10 orients centrosomes toward retraction fibers and subcortical actin clouds. Dev. Cell 34, 323–337 (2015). This paper shows that myosin X localized at actin retraction fibres mediates centrosome positioning in dividing adherent cells, allowing the cell to retain a memory of its interphase adhesion pattern.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Fink, J. et al. External forces control mitotic spindle positioning. Nat. Cell Biol. 13, 771–778 (2011).

    CAS  PubMed  Google Scholar 

  165. Matsumura, S. et al. Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1. Nat. Commun. 7, ncomms11858 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Bosveld, F. et al. Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis. Nature 530, 495–498 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Carminati, M. et al. Concomitant binding of Afadin to LGN and F-actin directs planar spindle orientation. Nat. Struct. Mol. Biol. 23, 155–163 (2016). This paper reports for the first time a mechanical anchor between dynein and the actin cortex in dividing epithelial cells that is based on the junctional protein afadin.

    CAS  PubMed  Google Scholar 

  168. Gloerich, M., Bianchini, J. M., Siemers, K. A., Cohen, D. J. & Nelson, W. J. Cell division orientation is coupled to cell-cell adhesion by the E-cadherin/LGN complex. Nat. Commun. 8, 13996 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Redemann, S. et al. Membrane invaginations reveal cortical sites that pull on mitotic spindles in one-cell C. elegans embryos. PLOS ONE 5, e12301 (2010).

    PubMed  PubMed Central  Google Scholar 

  170. Woolner, S. & Papalopulu, N. Spindle position in symmetric cell divisions during epiboly is controlled by opposing and dynamic apicobasal forces. Dev. Cell 22, 775–787 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Bringmann, H. & Hyman, A. A. A cytokinesis furrow is positioned by two consecutive signals. Nature 436, 731–734 (2005).

    CAS  PubMed  Google Scholar 

  172. Yuce, O., Piekny, A. & Glotzer, M. An ECT2-centralspindlin complex regulates the localization and function of RhoA. J. Cell Biol. 170, 571–582 (2005).

    PubMed  PubMed Central  Google Scholar 

  173. Canman, J. C. et al. Inhibition of Rac by the GAP activity of centralspindlin is essential for cytokinesis. Science 322, 1543–1546 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Foe, V. E. & von Dassow, G. Stable and dynamic microtubules coordinately shape the myosin activation zone during cytokinetic furrow formation. J. Cell Biol. 183, 457–470 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Fededa, J. P. & Gerlich, D. W. Molecular control of animal cell cytokinesis. Nat. Cell Biol. 14, 440–447 (2012).

    CAS  PubMed  Google Scholar 

  176. Nguyen, P. A. et al. Spatial organization of cytokinesis signaling reconstituted in a cell-free system. Science 346, 244–247 (2014). This paper reports the first cell-free reconstitution of signalling between the mitotic spindle and the actomyosin contractile ring that occurs at the midplane of dividing cells using cytoplasmic frog egg extracts and model biomembranes.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Turlier, H., Audoly, B., Prost, J. & Joanny, J. F. Furrow constriction in animal cell cytokinesis. Biophys. J. 106, 114–123 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Gregory, S. L. et al. Cell division requires a direct link between microtubule-bound RacGAP and Anillin in the contractile ring. Curr. Biol. 18, 25–29 (2008).

    CAS  PubMed  Google Scholar 

  179. van Oostende Triplet, C., Jaramillo Garcia, M., Haji Bik, H., Beaudet, D. & Piekny, A. Anillin interacts with microtubules and is part of the astral pathway that defines cortical domains. J. Cell Sci. 127, 3699–3710 (2014).

    PubMed  Google Scholar 

  180. Tse, Y. C., Piekny, A. & Glotzer, M. Anillin promotes astral microtubule-directed cortical myosin polarization. Mol. Biol. Cell 22, 3165–3175 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Sampathkumar, A. et al. Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis. Plant Cell 23, 2302–2313 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Hui, K. L. & Upadhyaya, A. Dynamic microtubules regulate cellular contractility during T cell activation. Proc. Natl Acad. Sci. USA 114, E4175–E4183 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Vleugel, M., Roth, S., Groenendijk, C. F. & Dogterom, M. Reconstitution of basic mitotic spindles in spherical emulsion droplets. J. Vis. Exp. 114, e54278 (2016).

    Google Scholar 

  184. Alvarado, J., Mulder, B. M. & Koenderink, G. H. Alignment of nematic and bundled semiflexible polymers in cell-sized confinement. Soft Matter 10, 2354–2364 (2014).

    CAS  PubMed  Google Scholar 

  185. Tsai, F. C. & Koenderink, G. H. Shape control of lipid bilayer membranes by confined actin bundles. Soft Matter 11, 8834–8847 (2015).

    CAS  PubMed  Google Scholar 

  186. Adikes, R. C., Hallett, R. A., Saway, B. F., Kuhlman, B. & Slep, K. C. Control of microtubule dynamics using an optogenetic microtubule plus end-F-actin cross-linker. J. Cell Biol. 217, 779–793 (2017).

    PubMed  Google Scholar 

  187. Chen, B. C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    PubMed  PubMed Central  Google Scholar 

  188. Welf, E. S. et al. Quantitative multiscale cell imaging in controlled 3D microenvironments. Dev. Cell 36, 462–475 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Akhmanova for frequent discussions and insight. The authors thank C. Alkemade for preparing original schematics for all the figures. G.H.K. gratefully acknowledges support by the European Research Council (Starting Grant 335672-MINICELL). M.D. gratefully acknowledges support by the European Research Council (Synergy Grant 609822-MODEL CELL).

Reviewer information

Nature Reviews Molecular Cell Biology thanks K. Slep and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, contributed to discussion of the content, wrote the article and reviewed and edited the manuscript.

Corresponding authors

Correspondence to Marileen Dogterom or Gijsje H. Koenderink.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Dynamic instability

A process of dynamic alternation between growing and shrinking states that is characteristic of microtubules and driven by the GTPase activity of tubulin.

Cell cortex

A thin (~100 nm) filamentous meshwork of actin filaments and actin-binding proteins including myosin motors, which are tightly associated with the plasma membrane via proteins of the ezrin–radixin–moesin family. The cortex protects the mechanical integrity of the cell membrane and has a central role in cell shape control.

Microtubule plus-end trackers

( +TIPs). Structurally diverse proteins that bind to the plus ends of growing microtubules. At least 20 different families of +TIPs exist. End-binding (EB) proteins are +TIPs that autonomously recognize growing microtubule ends. Other +TIPs bind to EB proteins through SxIP, Cap-Gly or LxxPTPh recognition motifs.+TIPs control microtubule dynamics and connect microtubules to various cellular structures, including the actin cortex, stress fibres and filopodial actin bundles.

Catastrophes

The switch to rapid depolymerization triggered by the loss of the GTP cap at the growing end of the microtubule.

Lamellipodium

A sheet-like membrane protrusion that spans 2–4 µm from the leading edge of migrating and spreading cells and of neuronal growth cones. It contains a dense, branched network of actin filaments that polymerize at their plus ends near the leading edge and depolymerize at the back. The part of the leading edge directly behind the lamellipodium contains a more stable network of unbranched actin filaments and is enriched in myosin II.

Focal adhesions

Adhesive junctions between cells and the ECM, which are mediated by integrins, whereby integrins interact with the ECM on the extracellular side and with actin bundles via adaptor and signalling proteins through their intracellular tails. Focal adhesions can contain over 100 different proteins, collectively referred to as the integrin adhesome. Cells modify the size and composition of focal adhesions in response to changes in the molecular composition and dimensionality (2D or 3D) of the matrix and physical forces.

Leading edge

The front of a migrating cell. It is characterized by actin polymerization and the formation of nascent adhesions.

Trailing edge

The rear end of a migrating cell. It is characterized by stable actin bundles and the release and disassembly of adhesions.

Stress fibres

Bundles of 10–30 actin filaments crosslinked by α-actinin and often containing myosin II. There are four distinct types of stress fibre. Ventral stress fibres connect focal adhesions close to the cell edge to adhesions behind or near the nucleus. They are contractile and drive tail retraction and cell shape changes in migrating cells. Dorsal stress fibres are non-contractile but transmit contractile forces to the substrate via connections to focal adhesions. Transverse arcs are curved bundles behind the lamellipodium that are not connected to focal adhesions. They have been implicated in actin retrograde flow. The perinuclear actin cap is an ensemble of stress fibres that is anchored to the nucleus and controls its shape.

Pseudopodia

A type of membrane protrusion that contributes to the crawling-like cell migration of amoebas and of mammalian cells in 3D extracellular matrices. In white blood cells, pseudopodia enable the capture and engulfment of antigens. Pseudopodia are extended by the polymerization of a dense network of branched actin filaments at the leading edge and are supported by microtubules.

Blebbing

A process associated with the formation of blebs, which are round protrusions of the cell membrane caused by contraction of the actomyosin cortex in conjunction with a local rupture in the actin cortex or a transient detachment of the cortex from the cell membrane. Bleb expansion is driven by intracellular pressure generated in the cytoplasm whereas bleb retraction is driven by reformation of an actin cortex followed by myosin-driven contraction. Blebbing occurs during apoptosis, can drive the 3D motility of confined cells and acts as a pressure valve in dividing cells.

Microtubule acetylation

A post-translational modification associated with long-lived microtubules whereby the Lys40 residue of α-tubulin in the microtubule lumen is enzymatically modified by tubulin acetyltransferase. Acetylation confers resilience against repeated mechanical stresses, thus protecting long-lived microtubules from mechanical ageing.

Profilin

A regulatory protein that promotes actin assembly by sequestering monomeric actin, converting ADP-actin monomers into ATP-actin monomers and collaborating with actin nucleators such as formin to promote actin filament elongation.

Filopodia

Thin (60–200 nm) membrane protrusions that extend from the leading edge of lamellipodia in migrating cells, neuronal growth cones and epithelial sheets. They contain parallel bundles of 10–30 actin filaments crosslinked by fascin and fimbrin. Filopodia form focal adhesions with the substrate and sense the extracellular environment at their tips using cell surface receptors. In neurons, filopodia serve as precursors for dendrites.

Navigator family

Microtubule-associated proteins that are expressed predominantly in the nervous system.

ADF/cofilin

A family of actin-binding proteins that disassemble actin filaments by depolymerization at the minus end and by severing.

Cytoplasmic flow

Refers to the movement of cytoplasm driven either by actomyosin contractility or by microtubule-based organelle movement. It is most common in plants and algae, but it also occurs during oogenesis in the fruitfly and during embryogenesis in Caenorhabditis elegans.

Microtubule minus-end trackers

(–TIPs). Proteins that specifically bind to the minus end of non-centrosomal microtubules. The best-characterized proteins of the calmodulin-regulated spectrin-associated protein (CAMSAP)–Patronin–Nezha family protect minus ends from depolymerization and connect them to various cellular structures including the actin cortex at the apical surface of epithelial cells.

Viscous drag

The frictional force that opposes the motion of an object in a viscous fluid. The viscous drag force is proportional to the velocity of the object, the fluid velocity and the object’s size, as expressed by Stokes’ law.

Hertwig’s rule

A rule introduced by the German zoologist Oscar Hertwig in 1884 that is based on observations of the orientation of divisions of frog eggs upon controlled compression, stating that a cell divides along its long axis.

Retraction fibres

Thin membrane tubes filled with actin filaments that maintain cell adhesion during mitotic rounding. They confer a memory of the cell–ECM adhesion geometry during interphase, allowing cells to orient their mitotic spindle.

Planar cell division

Symmetrical cell division within the plane of an epithelial tissue. Planar alignment of the mitotic spindle is mediated by cortical cues, cell shape and mechanical tension. Coordinated planar cell divisions serve to elongate growing epithelial tissues while maintaining tissue cohesion.

Septins

A family of guanine nucleotide binding proteins present in the cell as hetero-oligomeric complexes. They form higher-order filamentous structures that can interact with actin, microtubules and membranes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogterom, M., Koenderink, G.H. Actin–microtubule crosstalk in cell biology. Nat Rev Mol Cell Biol 20, 38–54 (2019). https://doi.org/10.1038/s41580-018-0067-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-018-0067-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing