Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The roles of structural dynamics in the cellular functions of RNAs

This article has been updated

Abstract

RNAs fold into 3D structures that range from simple helical elements to complex tertiary structures and quaternary ribonucleoprotein assemblies. The functions of many regulatory RNAs depend on how their 3D structure changes in response to a diverse array of cellular conditions. In this Review, we examine how the structural characterization of RNA as dynamic ensembles of conformations, which form with different probabilities and at different timescales, is improving our understanding of RNA function in cells. We discuss the mechanisms of gene regulation by microRNAs, riboswitches, ribozymes, post-transcriptional RNA modifications and RNA-binding proteins, and how the cellular environment and processes such as liquid–liquid phase separation may affect RNA folding and activity. The emerging RNA-ensemble–function paradigm is changing our perspective and understanding of RNA regulation, from in vitro to in vivo and from descriptive to predictive.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RNA structural changes enable biological functions.
Fig. 2: Dynamic ensembles describe the roles of RNA structural changes.
Fig. 3: Organizing principles of RNA ensembles.
Fig. 4: Ensemble-based modelling of RNA activity in vitro.
Fig. 5: The effect of cellular environments on RNA behaviour.
Fig. 6: RNA ensembles in cells.

Similar content being viewed by others

Change history

References

  1. Weber, G. Energetics of ligand binding to proteins. Adv. Protein Chem. 29, 1–83 (1975).

    CAS  PubMed  Google Scholar 

  2. Cech, T. R. & Steitz, J. A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157, 77–94 (2014).

    CAS  PubMed  Google Scholar 

  3. Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874 (2011).

    CAS  PubMed  Google Scholar 

  4. Childs-Disney, J. L. & Disney, M. D. Approaches to validate and manipulate RNA targets with small molecules in cells. Annu. Rev. Pharmacol. Toxicol. 56, 123–140 (2016).

    CAS  PubMed  Google Scholar 

  5. McKeague, M., Wong, R. S. & Smolke, C. D. Opportunities in the design and application of RNA for gene expression control. Nucleic Acids Res. 44, 2987–2999 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    CAS  PubMed  Google Scholar 

  8. Winkler, W., Nahvi, A. & Breaker, R. R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002).

    CAS  PubMed  Google Scholar 

  9. Cate, J. H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678–1685 (1996).

    CAS  PubMed  Google Scholar 

  10. Serganov, A. & Patel, D. J. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat. Rev. Genet. 8, 776–790 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Loveland, A. B., Demo, G., Grigorieff, N. & Korostelev, A. A. Ensemble cryo-EM elucidates the mechanism of translation fidelity. Nature 546, 113–117 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Prabhakar, A., Choi, J., Wang, J., Petrov, A. & Puglisi, J. D. Dynamic basis of fidelity and speed in translation: coordinated multistep mechanisms of elongation and termination. Protein Sci. 26, 1352–1362 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fica, S. M. & Nagai, K. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Nat. Struct. Mol. Biol. 24, 791–799 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Blanco, M. R. et al. Single molecule cluster analysis dissects splicing pathway conformational dynamics. Nat. Methods 12, 1077–1084 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mustoe, A. M., Brooks, C. L. & Al-Hashimi, H. M. Hierarchy of RNA functional dynamics. Annu. Rev. Biochem. 83, 441–466 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dallaire, P. et al. Structural dynamics control the microRNA maturation pathway. Nucleic Acids Res. 44, 9956–9964 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. Salari, R., Kimchi-Sarfaty, C., Gottesman, M. M. & Przytycka, T. M. Sensitive measurement of single-nucleotide polymorphism-induced changes of RNA conformation: application to disease studies. Nucleic Acids Res. 41, 44–53 (2013).

    CAS  PubMed  Google Scholar 

  18. Kutchko, K. M. et al. Multiple conformations are a conserved and regulatory feature of the RB1 5′ UTR. RNA 21, 1274–1285 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ritz, J., Martin, J. S. & Laederach, A. Evolutionary evidence for alternative structure in RNA sequence co-variation. PLOS Comput. Biol. 9, e1003152 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Halvorsen, M., Martin, J. S., Broadaway, S. & Laederach, A. Disease-associated mutations that alter the RNA structural ensemble. PLOS Genet. 6, e1001074 (2010).

    PubMed  PubMed Central  Google Scholar 

  21. Hermann, T. Strategies for the design of drugs targeting RNA and RNA–protein complexes. Angew. Chem. Int. Ed. Engl. 39, 1890–1904 (2000).

    CAS  PubMed  Google Scholar 

  22. Boehr, D. D., Nussinov, R. & Wright, P. E. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei, G., Xi, W., Nussinov, R. & Ma, B. Protein ensembles: how does nature harness thermodynamic fluctuations for life? The diverse functional roles of conformational ensembles in the cell. Chem. Rev. 116, 6516–6551 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).

    CAS  PubMed  Google Scholar 

  25. Schroeder, S. J. Challenges and approaches to predicting RNA with multiple functional structures. RNA 24, 1615–1624 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cruz, J. A. & Westhof, E. The dynamic landscapes of RNA architecture. Cell 136, 604–609 (2009).

    CAS  PubMed  Google Scholar 

  27. Leulliot, N. & Varani, G. Current topics in RNA-protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry 40, 7947–7956 (2001).

    CAS  PubMed  Google Scholar 

  28. Mironov, A. S. et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111, 747–756 (2002).

    CAS  PubMed  Google Scholar 

  29. Breaker, R. R. Prospects for riboswitch discovery and analysis. Mol. Cell 43, 867–879 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nudler, E. Flipping riboswitches. Cell 126, 19–22 (2006).

    CAS  PubMed  Google Scholar 

  31. Keane, S. C. et al. NMR detection of intermolecular interaction sites in the dimeric 5′-leader of the HIV-1 genome. Proc. Natl Acad. Sci. USA 113, 13033–13038 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Taliaferro, J. M. et al. RNA sequence context effects measured in vitro predict in vivo protein binding and regulation. Mol. Cell 64, 294–306 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bisaria, N. et al. Kinetic and thermodynamic framework for P4-P6 RNA reveals tertiary motif modularity and modulation of the folding preferred pathway. Proc. Natl Acad. Sci. USA 113, E4956–E4965 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ke, A., Zhou, K., Ding, F., Cate, J. H. & Doudna, J. A. A conformational switch controls hepatitis delta virus ribozyme catalysis. Nature 429, 201–205 (2004).

    CAS  PubMed  Google Scholar 

  35. Shajani, Z., Sykes, M. T. & Williamson, J. R. Assembly of bacterial ribosomes. Annu. Rev. Biochem. 80, 501–526 (2011).

    CAS  PubMed  Google Scholar 

  36. Nam, Y., Chen, C., Gregory, R. I., Chou, J. J. & Sliz, P. Molecular basis for interaction of let-7 microRNAs with Lin28. Cell 147, 1080–1091 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, X. et al. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 151, 939–947 (2010).

    CAS  PubMed  Google Scholar 

  38. Somarowthu, S. et al. HOTAIR forms an intricate and modular secondary structure. Mol. Cell 58, 353–361 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hawkes, E. J. et al. COOLAIR antisense RNAs form evolutionarily conserved elaborate secondary structures. Cell Rep. 16, 3087–3096 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Strulson, C. A., Molden, R. C., Keating, C. D. & Bevilacqua, P. C. RNA catalysis through compartmentalization. Nat. Chem. 4, 941–946 (2012).

    CAS  PubMed  Google Scholar 

  41. Kim, Y. & Myong, S. RNA remodeling activity of DEAD box proteins tuned by protein concentration, RNA length, and ATP. Mol. Cell 63, 865–876 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. USA 112, 7189–7194 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dethoff, E. A., Chugh, J., Mustoe, A. M. & Al-Hashimi, H. M. Functional complexity and regulation through RNA dynamics. Nature 482, 322–330 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Q., Stelzer, A. C., Fisher, C. K. & Al-Hashimi, H. M. Visualizing spatially correlated dynamics that directs RNA conformational transitions. Nature 450, 1263–1267 (2007).

    CAS  PubMed  Google Scholar 

  45. Salmon, L., Yang, S. & Al-Hashimi, H. M. Advances in the determination of nucleic acid conformational ensembles. Annu. Rev. Phys. Chem. 65, 293–316 (2014).

    CAS  PubMed  Google Scholar 

  46. Shi, X., Huang, L., Lilley, D. M., Harbury, P. B. & Herschlag, D. The solution structural ensembles of RNA kink-turn motifs and their protein complexes. Nat. Chem. Biol. 12, 146–152 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hansen, A. L. & Al-Hashimi, H. M. Dynamics of large elongated RNA by NMR carbon relaxation. J. Am. Chem. Soc. 129, 16072–16082 (2007).

    CAS  PubMed  Google Scholar 

  48. Shajani, Z., Drobny, G. & Varani, G. Binding of U1A protein changes RNA dynamics as observed by 13C NMR relaxation studies. Biochemistry 46, 5875–5883 (2007).

    CAS  PubMed  Google Scholar 

  49. Kumar, S., Ma, B., Tsai, C. J., Sinha, N. & Nussinov, R. Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci. 9, 10–19 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Herschlag, D. RNA chaperones and the RNA folding problem. J. Biol. Chem. 270, 20871–20874 (1995).

    CAS  PubMed  Google Scholar 

  51. Russell, R. RNA misfolding and the action of chaperones. Front. Biosci. 13, 1–20 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Dethoff, E. A., Petzold, K., Chugh, J., Casiano-Negroni, A. & Al-Hashimi, H. M. Visualizing transient low-populated structures of RNA. Nature 491, 724–728 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Salmon, L., Bascom, G., Andricioaei, I. & Al-Hashimi, H. M. A general method for constructing atomic-resolution RNA ensembles using NMR residual dipolar couplings: the basis for interhelical motions revealed. J. Am. Chem. Soc. 135, 5457–5466 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Merriman, D. K. et al. Shortening the HIV-1 TAR RNA bulge by a single nucleotide preserves motional modes over a broad range of time scales. Biochemistry 55, 4445–4456 (2016).

    CAS  PubMed  Google Scholar 

  55. Puglisi, J. D., Tan, R., Calnan, B. J., Frankel, A. D. & Williamson, J. R. Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science 257, 76–80 (1992).

    CAS  PubMed  Google Scholar 

  56. Lee, J., Dethoff, E. A. & Al-Hashimi, H. M. Invisible RNA state dynamically couples distant motifs. Proc. Natl Acad. Sci. USA 111, 9485–9490 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Merriman, D. K. et al. Increasing the length of poly-pyrimidine bulges broadens RNA conformational ensembles with minimal impact on stacking energetics. RNA 24, 1363–1376 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Qi, Y. et al. Continuous interdomain orientation distributions reveal components of binding thermodynamics. J. Mol. Biol. 430, 3412–3426 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Denny, S. K. et al. High-throughput investigation of diverse junction elements in RNA tertiary folding. Cell 174, 377–390 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tinoco, I. Jr & Bustamante, C. How RNA folds. J. Mol. Biol. 293, 271–281 (1999).

    CAS  PubMed  Google Scholar 

  61. Dill, K. A. Additivity principles in biochemistry. J. Biol. Chem. 272, 701–704 (1997).

    CAS  PubMed  Google Scholar 

  62. Rist, M. J. & Marino, J. P. Mechanism of nucleocapsid protein catalyzed structural isomerization of the dimerization initiation site of HIV-1. Biochemistry 41, 14762–14770 (2002).

    CAS  PubMed  Google Scholar 

  63. Kimsey, I. J. et al. Dynamic basis for dG*dT misincorporation via tautomerization and ionization. Nature 554, 195–201 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kimsey, I. J., Petzold, K., Sathyamoorthy, B., Stein, Z. W. & Al-Hashimi, H. M. Visualizing transient Watson-Crick-like mispairs in DNA and RNA duplexes. Nature 519, 315–320 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tian, S., Cordero, P., Kladwang, W. & Das, R. High-throughput mutate-map-rescue evaluates SHAPE-directed RNA structure and uncovers excited states. RNA 20, 1815–1826 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhao, B., Guffy, S. L., Williams, B. & Zhang, Q. An excited state underlies gene regulation of a transcriptional riboswitch. Nat. Chem. Biol. 13, 968–974 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Xue, Y., Gracia, B., Herschlag, D., Russell, R. & Al-Hashimi, H. M. Visualizing the formation of an RNA folding intermediate through a fast highly modular secondary structure switch. Nat. Commun. 7, ncomms11768 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gracia, B. et al. Hidden structural modules in a cooperative RNA folding transition. Cell Rep. 22, 3240–3250 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, J., Jones, C. P. & Ferre-D’Amare, A. R. Global analysis of riboswitches by small-angle X-ray scattering and calorimetry. Biochim. Biophys. Acta 1839, 1020–1029 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Williamson, J. R. Induced fit in RNA-protein recognition. Nature Struct. Biol. 7, 834–837 (2000).

    CAS  PubMed  Google Scholar 

  71. Borkar, A. N. et al. Structure of a low-population binding intermediate in protein-RNA recognition. Proc. Natl Acad. Sci. USA 113, 7171–7176 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bailor, M. H., Sun, X. & Al-Hashimi, H. M. Topology links RNA secondary structure with global conformation, dynamics, and adaptation. Science 327, 202–206 (2010).

    CAS  PubMed  Google Scholar 

  73. Mustoe, A. M., Brooks, C. L. 3rd & Al-Hashimi, H. M. Topological constraints are major determinants of tRNA tertiary structure and dynamics and provide basis for tertiary folding cooperativity. Nucleic Acids Res. 42, 11792–11804 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Fang, W. & Bartel, D. P. The menu of features that define primary microRNAs and enable de novo design of microRNA genes. Mol. Cell 60, 131–145 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sponer, J. et al. RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem. Rev. 118, 4177–4338 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tan, D., Piana, S., Dirks, R. M. & Shaw, D. E. RNA force field with accuracy comparable to state-of-the-art protein force fields. Proc. Natl Acad. Sci. USA 115, E1346–E1355 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin, J. H., Perryman, A. L., Schames, J. R. & McCammon, J. A. Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J. Am. Chem. Soc. 124, 5632–5633 (2002).

    CAS  PubMed  Google Scholar 

  78. Stelzer, A. C. et al. Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble. Nat. Chem. Biol. 7, 553–559 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ganser, L. R. et al. High-performance virtual screening by targeting a high-resolution RNA dynamic ensemble. Nat. Struct. Mol. Biol. 25, 425–434 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chu, V. B. et al. Do conformational biases of simple helical junctions influence RNA folding stability and specificity? RNA 15, 2195–2205 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yesselman, J. D. et al. RNA tertiary structure energetics predicted by an ensemble model of the RNA double helix. Preprint at bioRxiv https://doi.org/10.1101/341107 (2018).

  82. Reining, A. et al. Three-state mechanism couples ligand and temperature sensing in riboswitches. Nature 499, 355–359 (2013).

    CAS  PubMed  Google Scholar 

  83. Strebitzer, E. et al. 5-Oxyacetic acid modification destabilizes double helical stem structures and favors anionic Watson-Crick like cmo5 U-G base pairs. Chemistry 24, 18903–18906 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Allred, B. E., Gebala, M. & Herschlag, D. Determination of ion atmosphere effects on the nucleic acid electrostatic potential and ligand association using AH+ŸC wobble formation in double-stranded DNA. J. Am. Chem. Soc. 139, 7540–7548 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gebala, M. et al. Cation-anion interactions within the nucleic acid ion atmosphere revealed by ion counting. J. Am. Chem. Soc. 137, 14705–14715 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lipfert, J., Doniach, S., Das, R. & Herschlag, D. Understanding nucleic acid-ion interactions. Annu. Rev. Biochem. 83, 813–841 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Woodson, S. A. Compact intermediates in RNA folding. Annu. Rev. Biophys. 39, 61–77 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Draper, D. E. A guide to ions and RNA structure. RNA 10, 335–343 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chu, V. B., Bai, Y., Lipfert, J., Herschlag, D. & Doniach, S. A repulsive field: advances in the electrostatics of the ion atmosphere. Curr. Opin. Chem. Biol. 12, 619–625 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Yamagami, R., Bingaman, J. L., Frankel, E. A. & Bevilacqua, P. C. Cellular conditions of weakly chelated magnesium ions strongly promote RNA stability and catalysis. Nat. Commun. 9, 2149 (2018).

    PubMed  PubMed Central  Google Scholar 

  91. Leamy, K. A., Assmann, S. M., Mathews, D. H. & Bevilacqua, P. C. Bridging the gap between in vitro and in vivo RNA folding. Q. Rev. Biophys. 49, e10 (2016).

    PubMed  PubMed Central  Google Scholar 

  92. Dupuis, N. F., Holmstrom, E. D. & Nesbitt, D. J. Molecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics. Proc. Natl Acad. Sci. USA 111, 8464–8469 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kilburn, D., Roh, J. H., Guo, L., Briber, R. M. & Woodson, S. A. Molecular crowding stabilizes folded RNA structure by the excluded volume effect. J. Am. Chem. Soc. 132, 8690–8696 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Strulson, C. A., Yennawar, N. H., Rambo, R. P. & Bevilacqua, P. C. Molecular crowding favors reactivity of a human ribozyme under physiological ionic conditions. Biochemistry 52, 8187–8197 (2013).

    CAS  PubMed  Google Scholar 

  95. Nakano, S., Karimata, H. T., Kitagawa, Y. & Sugimoto, N. Facilitation of RNA enzyme activity in the molecular crowding media of cosolutes. J. Am. Chem. Soc. 131, 16881–16888 (2009).

    CAS  PubMed  Google Scholar 

  96. Desai, R., Kilburn, D., Lee, H. T. & Woodson, S. A. Increased ribozyme activity in crowded solutions. J. Biol. Chem. 289, 2972–2977 (2014).

    CAS  PubMed  Google Scholar 

  97. Rode, A. B., Endoh, T. & Sugimoto, N. Crowding shifts the FMN recognition mechanism of riboswitch aptamer from conformational selection to induced fit. Angew. Chem. Int. Ed. Engl. 57, 6868–6872 (2018).

    CAS  PubMed  Google Scholar 

  98. Lee, H. T., Kilburn, D., Behrouzi, R., Briber, R. M. & Woodson, S. A. Molecular crowding overcomes the destabilizing effects of mutations in a bacterial ribozyme. Nucleic Acids Res. 43, 1170–1176 (2015).

    CAS  PubMed  Google Scholar 

  99. Lambert, D. & Draper, D. E. Effects of osmolytes on RNA secondary and tertiary structure stabilities and RNA-Mg2+ interactions. J. Mol. Biol. 370, 993–1005 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Nakano, S., Miyoshi, D. & Sugimoto, N. Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem. Rev. 114, 2733–2758 (2014).

    CAS  PubMed  Google Scholar 

  101. Kim, Y. B. et al. Ligand binding to 2-deoxyguanosine sensing riboswitch in metabolic context. Nucleic Acids Res. 45, 5375–5386 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    CAS  PubMed  Google Scholar 

  104. Nielsen, F. C., Hansen, H. T. & Christiansen, J. RNA assemblages orchestrate complex cellular processes. Bioessays 38, 674–681 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Anderson, P. & Kedersha, N. RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat. Rev. Mol. Cell Biol. 10, 430–436 (2009).

    CAS  PubMed  Google Scholar 

  106. Spector, D. L. SnapShot: cellular bodies. Cell 127, 1071 (2006).

    PubMed  Google Scholar 

  107. Langdon, E. M. et al. mRNA structure determines specificity of a polyQ-driven phase separation. Science 360, 922–927 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Maharana, S. et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918–921 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gleitsman, K. R., Sengupta, R. N. & Herschlag, D. Slow molecular recognition by RNA. RNA 23, 1745–1753 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wickiser, J. K., Winkler, W. C., Breaker, R. R. & Crothers, D. M. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol. Cell 18, 49–60 (2005).

    CAS  PubMed  Google Scholar 

  112. Steinert, H. et al. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation. eLife 6, e21297 (2017).

    PubMed  PubMed Central  Google Scholar 

  113. Helmling, C. et al. Life times of metastable states guide regulatory signaling in transcriptional riboswitches. Nat. Commun. 9, 944 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. Uhm, H., Kang, W., Ha, K. S., Kang, C. & Hohng, S. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch. Proc. Natl Acad. Sci. USA 115, 331–336 (2018).

    CAS  PubMed  Google Scholar 

  115. Helmling, C. et al. NMR structural profiling of transcriptional intermediates reveals riboswitch regulation by metastable RNA conformations. J. Am. Chem. Soc. 139, 2647–2656 (2017).

    CAS  PubMed  Google Scholar 

  116. Landick, R. The regulatory roles and mechanism of transcriptional pausing. Biochem. Soc. Trans. 34, 1062–1066 (2006).

    CAS  PubMed  Google Scholar 

  117. Hua, B., Panja, S., Wang, Y., Woodson, S. A. & Ha, T. Mimicking co-transcriptional RNA folding using a superhelicase. J. Am. Chem. Soc. 140, 10067–10070 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Watters, K. E., Strobel, E. J., Yu, A. M., Lis, J. T. & Lucks, J. B. Cotranscriptional folding of a riboswitch at nucleotide resolution. Nat. Struct. Mol. Biol. 23, 1124–1131 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Strobel, E. J., Watters, K. E., Nedialkov, Y., Artsimovitch, I. & Lucks, J. B. Distributed biotin-streptavidin transcription roadblocks for mapping cotranscriptional RNA folding. Nucleic Acids Res. 45, e109 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Harcourt, E. M., Kietrys, A. M. & Kool, E. T. Chemical and structural effects of base modifications in messenger RNA. Nature 541, 339–346 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Meyer, K. D. & Jaffrey, S. R. Rethinking m6A readers, writers, and erasers. Annu. Rev. Cell Dev. Biol. 33, 319–342 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Choi, J. et al. 2′-O-methylation in mRNA disrupts tRNA decoding during translation elongation. Nat. Struct. Mol. Biol. 25, 208–216 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Choi, J. et al. N6-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat. Struct. Mol. Biol. 23, 110–115 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Roost, C. et al. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J. Am. Chem. Soc. 137, 2107–2115 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Spitale, R. C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu, B. et al. A potentially abundant junctional RNA motif stabilized by m6A and Mg2. Nat. Commun. 9, 2761 (2018).

    PubMed  PubMed Central  Google Scholar 

  127. Liu, N. et al. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560–564 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Vaidyanathan, P. P., AlSadhan, I., Merriman, D. K., Al-Hashimi, H. M. & Herschlag, D. Pseudouridine and N6-methyladenosine modifications weaken PUF protein/RNA interactions. RNA 23, 611–618 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Huang, L., Ashraf, S., Wang, J. & Lilley, D. M. Control of box C/D snoRNP assembly by N6-methylation of adenine. EMBO Rep. 18, 1631–1645 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhou, H. et al. m1A and m1G disrupt A-RNA structure through the intrinsic instability of Hoogsteen base pairs. Nat. Struct. Mol. Biol. 23, 803–810 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Li, X. et al. Base-resolution mapping reveals distinct m1a methylome in nuclear- and mitochondrial-encoded transcripts. Mol. Cell 68, 993–1005 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700 (2014).

    CAS  PubMed  Google Scholar 

  133. Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2014).

    CAS  PubMed  Google Scholar 

  134. Mustoe, A. M. et al. Pervasive regulatory functions of mRNA structure revealed by high-resolution SHAPE probing. Cell 173, 181–195 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Beaudoin, J. D. et al. Analyses of mRNA structure dynamics identify embryonic gene regulatory programs. Nat. Struct. Mol. Biol. 25, 677–686 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sun, L. et al. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26, 322–330 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Guo, J. U. & Bartel, D. P. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science 353, aaf5371 (2016).

    PubMed  PubMed Central  Google Scholar 

  138. Yang, S. Y. et al. Transcriptome-wide identification of transient RNA G-quadruplexes in human cells. Nat. Commun. 9, 4730 (2018).

    PubMed  PubMed Central  Google Scholar 

  139. Spasic, A., Assmann, S. M., Bevilacqua, P. C. & Mathews, D. H. Modeling RNA secondary structure folding ensembles using SHAPE mapping data. Nucleic Acids Res. 46, 314–323 (2018).

    CAS  PubMed  Google Scholar 

  140. Li, H. & Aviran, S. Statistical modeling of RNA structure profiling experiments enables parsimonious reconstruction of structure landscapes. Nat. Commun. 9, 606 (2018).

    PubMed  PubMed Central  Google Scholar 

  141. Ding, Y., Chan, C. Y. & Lawrence, C. E. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res. 32, W135–W141 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Rogers, E. & Heitsch, C. E. Profiling small RNA reveals multimodal substructural signals in a Boltzmann ensemble. Nucleic Acids Res. 42, e171 (2014).

    PubMed  PubMed Central  Google Scholar 

  143. Frank, A. T., Stelzer, A. C., Al-Hashimi, H. M. & Andricioaei, I. Constructing RNA dynamical ensembles by combining MD and motionally decoupled NMR RDCs: new insights into RNA dynamics and adaptive ligand recognition. Nucleic Acids Res. 37, 3670–3679 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Woods, C. T. et al. Comparative visualization of the RNA suboptimal conformational ensemble in vivo. Biophys. J. 113, 290–301 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Merino, E. J., Wilkinson, K. A., Coughlan, J. L. & Weeks, K. M. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127, 4223–4231 (2005).

    CAS  PubMed  Google Scholar 

  146. Cordero, P. & Das, R. Rich RNA structure landscapes revealed by mutate-and-map analysis. PLOS Comput. Biol. 11, e1004473 (2015).

    PubMed  PubMed Central  Google Scholar 

  147. Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).

    PubMed  PubMed Central  Google Scholar 

  148. Jarmoskaite, I. et al. A quantitative and predictive model for RNA binding by human Pumilio proteins. Mol. Cell https://doi.org/10.1016/j.molcel.2019.04.012 (2019).

    Article  Google Scholar 

  149. Rzuczek, S. G., Park, H. & Disney, M. D. A toxic RNA catalyzes the in cellulo synthesis of its own inhibitor. Angew. Chem. Int. Ed. Engl. 53, 10956–10959 (2014).

    CAS  PubMed  Google Scholar 

  150. Quarles, K. A. et al. Ensemble analysis of primary microRNA structure reveals an extensive capacity to deform near the Drosha cleavage site. Biochemistry 52, 795–807 (2013).

    CAS  PubMed  Google Scholar 

  151. Li, W. et al. Germline mutation of microRNA-125a is associated with breast cancer. J. Med. Genet. 46, 358–360 (2009).

    CAS  PubMed  Google Scholar 

  152. Mustoe, A. M. et al. Noncanonical secondary structure stabilizes mitochondrial tRNA(Ser(UCN)) by reducing the entropic cost of tertiary folding. J. Am. Chem. Soc. 137, 3592–3599 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Mustoe, B. Liu, A. K. Rangadurai, N. Orlovsky and other members of the Al-Hashimi laboratory for critical input and help in making figures, and R. Das (Stanford University, CA, USA), P. Z. Qin (USC, Los Angeles, CA, USA)), Q. Zhang (UNC Chapel Hill, NC, USA), A. Bartesaghi (Duke University, NC, USA), S. Bonilla (Stanford University, CA, USA) and T. Oas (Duke University, NC, USA) for critical input. This work was supported by the US National Institutes of Health (P50 GM103297 and P01 GM0066275 to H.M.A. and D.H.; F31 GM119306 to L.R.G.).

Reviewer information

Nature Reviews Molecular Cell Biology thanks A. Laederach, J. Lucks and K. Weeks for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the discussion of content and the editing of the manuscript before submission. L.R.G. and H.M.A. wrote the manuscript.

Corresponding author

Correspondence to Hashim M. Al-Hashimi.

Ethics declarations

Competing interests

H.M.A. is an adviser to and holds an ownership interest in Nymirum Inc., an RNA-based drug discovery company. Some of the technology used to generate ensembles described in this Review has been licensed to Nymirum, Inc. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Secondary structures

RNA structures described in terms of nucleotide pairing.

Ribozymes

RNA structures capable of catalysing specific biochemical reactions such as cleaving the RNA phosphodiester backbone.

Riboswitches

RNA structures typically found in 5′-untranslated regions of bacterial mRNAs, which regulate transcription or translation through a ligand-induced conformational change.

Tertiary structures

Typically long-range interactions between distal RNA structural elements or nucleotides involved in base pairing.

Quaternary assemblies

Higher-order organizations of RNA molecules in complex with other molecules, including with other RNAs, proteins and DNA.

Boltzmann distribution

A probability distribution that describes the likelihood that a system will be in a specific state based on the relative energy of that state and the temperature of the system.

Dynamic ensembles

The many conformations adopted by an RNA molecule over time and their abundance or probabilities of formation as described by the Boltzmann distribution.

Free energy landscape

A depiction of the free energy of every conformational state in a macromolecule.

Ground state

The lowest-energy and therefore most populated structural conformation of an RNA molecule.

RNA junction topology

In a structured RNA molecule, the lengths of the different single strands that adjoin helices.

Four-way junction

A structural element in which four helices come together.

Native secondary structure

The lowest-energy and therefore most populated secondary structure adopted by a particular RNA molecule.

Non-native secondary structures

Alternative secondary structures of RNA that are of higher energy than the native structure, but still form in solution with non-negligible probability.

Apical loop

A single-stranded RNA loop of variable length at the end of a helical region.

Coaxial conformations

Conformations in which two helices stack on each other across inter-helical junctions.

Base triple

A structural element in which three nucleotides are hydrogen bonded to one another.

Inter-helical dynamics

Conformational changes at junctions between two helices that lead to changes in the bend and twist angles between the two helices, thus greatly affecting the global conformation of the RNA.

Tetraloops

Apical loops composed of four nucleotides.

Sugar pucker

A conformational description of the ribose sugar ring in nucleic acids. The sugar pucker tends to be predominately C3′-endo for the helical A-form RNA conformation.

Computational docking

The use of computational algorithms to predict the lowest-energy conformation for the binding of a small molecule to a receptor molecule (RNA or protein).

Ensemble redistribution

Changes in the abundance of two or more conformations in the RNA ensemble, which are induced by a cellular cue such as the binding of a protein or ligand or by post-transcriptional modifications.

Tertiary receptors

Regions of RNA molecules that are involved in tertiary, long-range interactions.

Nucleic acid force fields

The physical models used to computationally predict nucleic acid dynamics in molecular dynamics simulations.

Tautomerization

The interconversion between two molecules with the same molecular formula but different connectivity.

Metastable conformations

RNA conformations that are only stable within a short range of nucleotide lengths during co-transcriptional folding.

SHAPE

Selective 1′-hydroxyl acylation analysed by primer extension (SHAPE) is a common chemical-probing technique used to elucidate RNA secondary structures.

Click chemistry

Simple and robust chemical reactions commonly used to covalently join specific substrates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganser, L.R., Kelly, M.L., Herschlag, D. et al. The roles of structural dynamics in the cellular functions of RNAs. Nat Rev Mol Cell Biol 20, 474–489 (2019). https://doi.org/10.1038/s41580-019-0136-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-019-0136-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing