Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular crosstalk in the development and regeneration of the respiratory system

Abstract

The respiratory system, including the peripheral lungs, large airways and trachea, is one of the most recently evolved adaptations to terrestrial life. To support the exchange of respiratory gases, the respiratory system is interconnected with the cardiovascular system, and this interconnective nature requires a complex interplay between a myriad of cell types. Until recently, this complexity has hampered our understanding of how the respiratory system develops and responds to postnatal injury to maintain homeostasis. The advent of new single-cell sequencing technologies, developments in cellular and tissue imaging and advances in cell lineage tracing have begun to fill this gap. The view that emerges from these studies is that cellular and functional heterogeneity of the respiratory system is even greater than expected and also highly adaptive. In this Review, we explore the cellular crosstalk that coordinates the development and regeneration of the respiratory system. We discuss both the classic cell and developmental biology studies and recent single-cell analysis to provide an integrated understanding of the cellular niches that control how the respiratory system develops, interacts with the external environment and responds to injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular composition of airways.
Fig. 2: Cellular composition of alveoli.
Fig. 3: Respiratory tract development and endoderm–mesoderm interactions.
Fig. 4: The airway niche turnover at homeostasis and in response to injury.
Fig. 5: Response of the alveolar niche to tissue injury.

Similar content being viewed by others

References

  1. Lee, J. H. et al. Anatomically and functionally distinct lung mesenchymal populations marked by Lgr5 and Lgr6. Cell 170, 1149–1163 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Volckaert, T. et al. Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury. J. Clin. Invest. 121, 4409–4419 (2011). Lee et al. (2014) and Volckaert et al. (2011) demonstrate the requirement of anatomically distinct mesenchymal cell types, such as LGR6-positive airway smooth muscle cells in promoting epithelial recovery after injury.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Barkauskas, C. E. et al. Type 2 alveolar cells are stem cells in adult lung. J. Clin. Invest. 123, 3025–3036 (2013). This study uses genetic lineage tracing techniques to show that AT2 cells contain a progenitor cell function in the adult lung and can differentiate into AT1 cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Frank, D. B. et al. Emergence of a wave of Wnt signaling that regulates lung alveologenesis by controlling epithelial self-renewal and differentiation. Cell Rep. 17, 2312–2325 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Caduff, J. H., Fischer, L. C. & Burri, P. H. Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat. Rec. 216, 154–164 (1986).

    CAS  PubMed  Google Scholar 

  6. Chung, M. I., Bujnis, M., Barkauskas, C. E., Kobayashi, Y. & Hogan, B. L. M. Niche-mediated BMP/SMAD signaling regulates lung alveolar stem cell proliferation and differentiation. Development 145, dev163014 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. Nabhan, A. N., Brownfield, D. G., Harbury, P. B., Krasnow, M. A. & Desai, T. J. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science 359, 1118–1123 (2018). This study identifies an Axin2 -positive AT2 cell in the adult lung with progenitor cell activity that is maintained by a WNT-producing mesenchymal niche cell.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zepp, J. A. et al. Distinct mesenchymal lineages and niches promote epithelial self-renewal and myofibrogenesis in the lung. Cell 170, 1134–1148 (2017). This study reveals the cellular and functional complexity within the adult lung mesenchyme using single-cell RNA sequencing methods and identified mesenchymal cell types important for alveolar niche support and for generating deleterious myofibroblasts after injury.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Que, J. et al. Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc. Natl Acad. Sci. USA 105, 16626–16630 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yin, Y., Wang, F. & Ornitz, D. M. Mesothelial- and epithelial-derived FGF9 have distinct functions in the regulation of lung development. Development 138, 3169–3177 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dixit, R., Ai, X. & Fine, A. Derivation of lung mesenchymal lineages from the fetal mesothelium requires hedgehog signaling for mesothelial cell entry. Development 140, 4398–4406 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. von Gise, A. et al. Contribution of fetal, but not adult, pulmonary mesothelium to mesenchymal lineages in lung homeostasis and fibrosis. Am. J. Respir. Cell Mol. Biol. 54, 222–230 (2016).

    Google Scholar 

  13. Barrios, J. et al. Pulmonary neuroendocrine cells secrete GABA to induce goblet cell hyperplasia in primate models. Am. J. Respir. Cell Mol. Biol. https://doi.org/10.1165/rcmb.2018-0179OC (2018).

  14. Song, H. et al. Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis. Proc. Natl Acad. Sci. USA 109, 17531–17536 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Branchfield, K. et al. Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science 351, 707–710 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sui, P. et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science 360, eaan8546 (2018).

    PubMed  PubMed Central  Google Scholar 

  17. Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Montoro, D. T. et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560, 319–324 (2018). Plasschaert et al. and Montoro et al. describe, by means of single-cell RNA sequencing, new epithelial cell lineages within the adult trachea and airways of mice and humans, including the ionocyte, which expresses high levels of CFTR.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Krasteva, G. & Kummer, W. “Tasting” the airway lining fluid. Histochem. Cell Biol. 138, 365–383 (2012).

    CAS  PubMed  Google Scholar 

  20. Gerbe, F. & Jay, P. Intestinal tuft cells: epithelial sentinels linking luminal cues to the immune system. Mucosal Immunol. 9, 1353–1359 (2016).

    CAS  PubMed  Google Scholar 

  21. von Moltke, J., Ji, M., Liang, H. E. & Locksley, R. M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529, 221–225 (2016).

    Google Scholar 

  22. Ratjen, F. et al. Cystic fibrosis. Nat. Rev. Dis. Primers 1, 15010 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Lynch, T. J. et al. Submucosal gland myoepithelial cells are reserve stem cells that can regenerate mouse tracheal epithelium. Cell Stem Cell 22, 653–667 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tata, A. et al. Myoepithelial cells of submucosal glands can function as reserve stem cells to regenerate airways after injury. Cell Stem Cell 22, 668–683 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Goss, A. M. et al. Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev. Cell 17, 290–298 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Harris-Johnson, K. S., Domyan, E. T., Vezina, C. M. & Sun, X. β-Catenin promotes respiratory progenitor identity in mouse foregut. Proc. Natl Acad. Sci. USA 106, 16287–16292 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rankin, S. A., Gallas, A. L., Neto, A., Gomez-Skarmeta, J. L. & Zorn, A. M. Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/beta-catenin-mediated lung specification in Xenopus. Development 139, 3010–3020 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Arora, R., Metzger, R. J. & Papaioannou, V. E. Multiple roles and interactions of Tbx4 and Tbx5 in development of the respiratory system. PLOS Genet. 8, e1002866 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bellusci, S., Grindley, J., Emoto, H., Itoh, N. & Hogan, B. L. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124, 4867–4878 (1997).

    CAS  PubMed  Google Scholar 

  30. Ohuchi, H. et al. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem. Biophys. Res. Commun. 277, 643–649 (2000).

    CAS  PubMed  Google Scholar 

  31. Sekine, K. et al. Fgf10 is essential for limb and lung formation. Nat. Genet. 21, 138–141 (1999).

    CAS  PubMed  Google Scholar 

  32. Weaver, M., Dunn, N. R. & Hogan, B. L. Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development 127, 2695–2704 (2000). This seminal article reveals the signalling complexity that regulates branching morphogenesis within the developing lung, focusing on two critical signalling pathways: BMP and FGF10.

    CAS  PubMed  Google Scholar 

  33. Menshykau, D., Blanc, P., Unal, E., Sapin, V. & Iber, D. An interplay of geometry and signaling enables robust lung branching morphogenesis. Development 141, 4526–4536 (2014).

    CAS  PubMed  Google Scholar 

  34. Nikolic, M. Z. et al. Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids. eLife 6, e26575 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Yang, Y. et al. Spatial-temporal lineage restrictions of embryonic p63+ progenitors establish distinct stem cell pools in adult airways. Dev. Cell 44, 752–761 (2018). This study describes the early developmental potential of TRP63-positive basal cells in the lung and documents the presence of a small subset of these cells that respond to acute lung injury in the adult.

    PubMed  PubMed Central  Google Scholar 

  36. Guha, A. et al. Neuroepithelial body microenvironment is a niche for a distinct subset of Clara-like precursors in the developing airways. Proc. Natl Acad. Sci. USA 109, 12592–12597 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kurotani, R. et al. Role of secretoglobin 3A2 in lung development. Am. J. Respir. Crit. Care Med. 178, 389–398 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rawlins, E. L., Ostrowski, L. E., Randell, S. H. & Hogan, B. L. Lung development and repair: contribution of the ciliated lineage. Proc. Natl Acad. Sci. USA 104, 410–417 (2007).

    CAS  PubMed  Google Scholar 

  39. Herriges, M. & Morrisey, E. E. Lung development: orchestrating the generation and regeneration of a complex organ. Development 141, 502–513 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Morrisey, E. E. et al. Molecular determinants of lung development. Ann. Am. Thorac Soc. 10, S12–S16 (2013).

    PubMed  PubMed Central  Google Scholar 

  41. Morrisey, E. E. & Hogan, B. L. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev. Cell 18, 8–23 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Que, J., Choi, M., Ziel, J. W., Klingensmith, J. & Hogan, B. L. Morphogenesis of the trachea and esophagus: current players and new roles for noggin and Bmps. Differentiation 74, 422–437 (2006).

    CAS  PubMed  Google Scholar 

  43. Swarr, D. T. & Morrisey, E. E. Lung endoderm morphogenesis: gasping for form and function. Annu. Rev. Cell Dev. Biol. 31, 553–573 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Que, J., Luo, X., Schwartz, R. J. & Hogan, B. L. Multiple roles for Sox2 in the developing and adult mouse trachea. Development 136, 1899–1907 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Que, J. et al. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development 134, 2521–2531 (2007).

    CAS  PubMed  Google Scholar 

  46. Tompkins, D. H. et al. Sox2 is required for maintenance and differentiation of bronchiolar Clara, ciliated, and goblet cells. PLOS ONE 4, e8248 (2009).

    PubMed  PubMed Central  Google Scholar 

  47. Tsao, P. N. et al. Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development 136, 2297–2307 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Guseh, J. S. et al. Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development 136, 1751–1759 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, J., Knowles, H. J., Hebert, J. L. & Hackett, B. P. Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left-right asymmetry. J. Clin. Invest. 102, 1077–1082 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Galvis, L. A. et al. Repression of Igf1 expression by Ezh2 prevents basal cell differentiation in the developing lung. Development 142, 1458–1469 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Snitow, M. E. et al. Ezh2 represses the basal cell lineage during lung endoderm development. Development 142, 108–117 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yao, C. et al. Sin3a regulates epithelial progenitor cell fate during lung development. Development 144, 2618–2628 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rawlins, E. L., Clark, C. P., Xue, Y. & Hogan, B. L. The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development 136, 3741–3745 (2009). Using a novel genetic lineage tracing model, the authors of this study reveal the multipotent nature of the distal tip endoderm in the early lung and show that it is temporally restricted.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Desai, T. J., Brownfield, D. G. & Krasnow, M. A. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507, 190–194 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Frank, D. B. et al. Early lineage specification defines alveolar epithelial ontogeny in the murine lung. Proc. Natl Acad. Sci. USA 116, 4362–4371 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, J. et al. The strength of mechanical forces determines the differentiation of alveolar epithelial cells. Dev. Cell 44, 297–312 (2018).

    CAS  PubMed  Google Scholar 

  57. Peng, T. et al. Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor. Nature 500, 589–592 (2013). Using multiple genetic lineage tracing models, the authors identify a novel mesoderm cell type that generates multiple lineages within the heart and lungs to drive their tissue integration during development.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kumar, M. E. et al. Mesenchymal cells. Defining a mesenchymal progenitor niche at single-cell resolution. Science 346, 1258810 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Chen, F. et al. A retinoic acid-dependent network in the foregut controls formation of the mouse lung primordium. J. Clin. Invest. 120, 2040–2048 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Desai, T. J., Malpel, S., Flentke, G. R., Smith, S. M. & Cardoso, W. V. Retinoic acid selectively regulates Fgf10 expression and maintains cell identity in the prospective lung field of the developing foregut. Dev. Biol. 273, 402–415 (2004).

    CAS  PubMed  Google Scholar 

  61. Goss, A. M. et al. Wnt2 signaling is necessary and sufficient to activate the airway smooth muscle program in the lung by regulating myocardin/Mrtf-B and Fgf10 expression. Dev. Biol. 356, 541–552 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Shannon, J. M., Nielsen, L. D., Gebb, S. A. & Randell, S. H. Mesenchyme specifies epithelial differentiation in reciprocal recombinants of embryonic lung and trachea. Dev. Dyn. 212, 482–494 (1998).

    CAS  PubMed  Google Scholar 

  63. Shannon, J. M. Induction of alveolar type II cell differentiation in fetal tracheal epithelium by grafted distal lung mesenchyme. Dev. Biol. 166, 600–614 (1994).

    CAS  PubMed  Google Scholar 

  64. Abler, L. L., Mansour, S. L. & Sun, X. Conditional gene inactivation reveals roles for Fgf10 and Fgfr2 in establishing a normal pattern of epithelial branching in the mouse lung. Dev. Dyn. 238, 1999–2013 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. El Agha, E. et al. Characterization of a novel fibroblast growth factor 10 (Fgf10) knock-in mouse line to target mesenchymal progenitors during embryonic development. PLOS ONE 7, e38452 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Moiseenko, A. et al. Origin and characterization of alpha smooth muscle actin-positive cells during murine lung development. Stem Cells 35, 1566–1578 (2017).

    CAS  PubMed  Google Scholar 

  67. Miller, L. A. et al. Role of Sonic hedgehog in patterning of tracheal-bronchial cartilage and the peripheral lung. Dev. Dyn. 231, 57–71 (2004).

    CAS  PubMed  Google Scholar 

  68. Shu, W., Jiang, Y. Q., Lu, M. M. & Morrisey, E. E. Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development 129, 4831–4842 (2002).

    CAS  PubMed  Google Scholar 

  69. Yin, Y. et al. An FGF-WNT gene regulatory network controls lung mesenchyme development. Dev. Biol. 319, 426–436 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cornett, B. et al. Wntless is required for peripheral lung differentiation and pulmonary vascular development. Dev. Biol. 379, 38–52 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Snowball, J., Ambalavanan, M., Whitsett, J. & Sinner, D. Endodermal Wnt signaling is required for tracheal cartilage formation. Dev. Biol. 405, 56–70 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim, H. Y. et al. Localized smooth muscle differentiation is essential for epithelial bifurcation during branching morphogenesis of the mammalian lung. Dev. Cell 34, 719–726 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hines, E. A., Jones, M. K., Verheyden, J. M., Harvey, J. F. & Sun, X. Establishment of smooth muscle and cartilage juxtaposition in the developing mouse upper airways. Proc. Natl Acad. Sci. USA 110, 19444–19449 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Herring, M. J., Putney, L. F., Wyatt, G., Finkbeiner, W. E. & Hyde, D. M. Growth of alveoli during postnatal development in humans based on stereological estimation. Am. J. Physiol. Lung Cell. Mol. Physiol. 307, L338–344 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Narayanan, M. et al. Alveolarization continues during childhood and adolescence: new evidence from helium-3 magnetic resonance. Am. J. Respir. Crit. Care Med. 185, 186–191 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang, J. et al. The development and plasticity of alveolar type 1 cells. Development 143, 54–65 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lu, Y., Thomson, J. M., Wong, H. Y., Hammond, S. M. & Hogan, B. L. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev. Biol. 310, 442–453 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, Y. et al. HDAC3-dependent epigenetic pathway controls lung alveolar epithelial cell remodeling and spreading via miR-17-92 and TGF-beta signaling regulation. Dev. Cell 36, 303–315 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Stankiewicz, P. et al. Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations. Am. J. Hum. Genet. 84, 780–791 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ren, X. et al. FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells. Circ. Res. 115, 709–720 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Madison, B. B., McKenna, L. B., Dolson, D., Epstein, D. J. & Kaestner, K. H. FoxF1 and FoxL1 link hedgehog signaling and the control of epithelial proliferation in the developing stomach and intestine. J. Biol. Chem. 284, 5936–5944 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Branchfield, K. et al. A three-dimensional study of alveologenesis in mouse lung. Dev. Biol. 409, 429–441 (2016).

    CAS  PubMed  Google Scholar 

  83. Bostrom, H. et al. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85, 863–873 (1996).

    CAS  PubMed  Google Scholar 

  84. Gouveia, L., Betsholtz, C. & Andrae, J. PDGF-A signaling is required for secondary alveolar septation and controls epithelial proliferation in the developing lung. Development 145, dev161976 (2018).

    PubMed  Google Scholar 

  85. Lindahl, P. et al. Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development 124, 3943–3953 (1997).

    CAS  PubMed  Google Scholar 

  86. Sun, T. et al. A human YAC transgene rescues craniofacial and neural tube development in PDGFRalpha knockout mice and uncovers a role for PDGFRalpha in prenatal lung growth. Development 127, 4519–4529 (2000).

    CAS  PubMed  Google Scholar 

  87. Li, C. et al. Progenitors of secondary crest myofibroblasts are developmentally committed in early lung mesoderm. Stem Cells 33, 999–1012 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kugler, M. C. et al. Sonic Hedgehog signaling regulates myofibroblast function during alveolar septum formation in murine postnatal lung. Am. J. Respir. Cell. Mol. Biol. 57, 280–293 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Giangreco, A., Reynolds, S. D. & Stripp, B. R. Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am. J. Pathol. 161, 173–182 (2002).

    PubMed  PubMed Central  Google Scholar 

  90. Hong, K. U., Reynolds, S. D., Giangreco, A., Hurley, C. M. & Stripp, B. R. Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am. J. Respir. Cell. Mol. Biol. 24, 671–681 (2001).

    CAS  PubMed  Google Scholar 

  91. Balasooriya, G. I., Goschorska, M., Piddini, E. & Rawlins, E. L. FGFR2 is required for airway basal cell self-renewal and terminal differentiation. Development 144, 1600–1606 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Tadokoro, T., Gao, X., Hong, C. C., Hotten, D. & Hogan, B. L. BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors. Development 143, 764–773 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Pardo-Saganta, A. et al. Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations. Cell Stem Cell 16, 184–197 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Mori, M. et al. Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors. Development 142, 258–267 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lafkas, D. et al. Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung. Nature 528, 127–131 (2015).

    CAS  PubMed  Google Scholar 

  96. Mahoney, J. E., Mori, M., Szymaniak, A. D., Varelas, X. & Cardoso, W. V. The hippo pathway effector Yap controls patterning and differentiation of airway epithelial progenitors. Dev. Cell 30, 137–150 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. McConnell, A. M. et al. p53 regulates progenitor cell quiescence and differentiation in the airway. Cell Rep. 17, 2173–2182 (2016).

    CAS  PubMed  Google Scholar 

  98. Rock, J. R. et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl Acad. Sci. USA 106, 12771–12775 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mou, H. et al. Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells. Cell Stem Cell 19, 217–231 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Peng, T. et al. Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration. Nature 526, 578–582 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Volckaert, T. et al. Fgf10-Hippo epithelial-mesenchymal crosstalk maintains and recruits lung basal stem cells. Dev. Cell 43, 48–59 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Rock, J. R. et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc. Natl Acad. Sci. USA 108, E1475–E1483 (2011). This study shows that an epithelial–mesenchymal transition process does not occur at a high level after lung injury.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Jain, R. et al. Plasticity of Hopx+ type I alveolar cells to regenerate type II cells in the lung. Nat. Commun. 6, 6727 (2015).

    CAS  PubMed  Google Scholar 

  104. Zacharias, W. J. et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 555, 251–255 (2018). This study identifies the alveolar epithelial progenitor cell, which can be identified by expression of Axin2, and is responsible for most of the alveolar epithelial regeneration after acute lung injury.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen, L., Acciani, T., Le Cras, T., Lutzko, C. & Perl, A. K. Dynamic regulation of platelet-derived growth factor receptor alpha expression in alveolar fibroblasts during realveolarization. Am. J. Respir. Cell. Mol. Biol. 47, 517–527 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kaplan, N. B., Grant, M. M. & Brody, J. S. The lipid interstitial cell of the pulmonary alveolus. Age and species differences. Am. Rev. Respir. Dis. 132, 1307–1312 (1985).

    CAS  PubMed  Google Scholar 

  107. McGowan, S. E. & Torday, J. S. The pulmonary lipofibroblast (lipid interstitial cell) and its contributions to alveolar development. Annu. Rev. Physiol. 59, 43–62 (1997).

    CAS  PubMed  Google Scholar 

  108. Ding, B. S. et al. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 147, 539–553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee, J. H. et al. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell 156, 440–455 (2014). This study reveals the importance of endothelial–epithelial signalling in regulating alveolar epithelial differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Cao, Z. et al. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nat. Med. 22, 154–162 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lechner, A. J. et al. Recruited monocytes and type 2 immunity promote lung regeneration following pneumonectomy. Cell Stem Cell 21, 120–134 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Nureki, S. I. et al. Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis. J. Clin. Invest. 128, 4008–4024 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. Alder, J. K. et al. Telomere dysfunction causes alveolar stem cell failure. Proc. Natl Acad. Sci. USA 112, 5099–5104 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Alder, J. K. et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc. Natl Acad. Sci. USA 105, 13051–13056 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Povedano, J. M., Martinez, P., Flores, J. M., Mulero, F. & Blasco, M. A. Mice with pulmonary fibrosis driven by telomere dysfunction. Cell Rep. 12, 286–299 (2015).

    CAS  PubMed  Google Scholar 

  117. Kramann, R. et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16, 51–66 (2015).

    CAS  PubMed  Google Scholar 

  118. Li, R. et al. Pdgfra marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation and injury response. eLife 7, e36865 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. Munger, J. S. et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    CAS  PubMed  Google Scholar 

  120. Xie, T. et al. Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis. J. Clin. Invest. 126, 3063–3079 (2016).

    PubMed  PubMed Central  Google Scholar 

  121. El Agha, E. et al. Two-way conversion between lipogenic and myogenic fibroblastic phenotypes marks the progression and resolution of lung fibrosis. Cell Stem Cell 20, 571 (2017).

    CAS  PubMed  Google Scholar 

  122. Kumar, P. A. et al. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell 147, 525–538 (2011). This study was the first to demonstrate the expansion of epithelial pods following severe lung injury mediated by influenza infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Vaughan, A. E. et al. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature 517, 621–625 (2015).

    CAS  PubMed  Google Scholar 

  124. Zuo, W. et al. p63+Krt5+ distal airway stem cells are essential for lung regeneration. Nature 517, 616–620 (2015). Vaughan et al. and Zuo et al. along with Kumar et. al. (2011) describe the expansion of KRT5-positive basal-like cells after acute lung injury.

    CAS  PubMed  Google Scholar 

  125. Ray, S. et al. Rare SOX2+ airway progenitor cells generate KRT5+ cells that repopulate damaged alveolar parenchyma following influenza virus infection. Stem. Cell Rep. 7, 817–825 (2016).

    CAS  Google Scholar 

  126. Taylor, M. S. et al. A conserved distal lung regenerative pathway in acute lung injury. Am. J. Pathol. 188, 1149–1160 (2018).

    PubMed  PubMed Central  Google Scholar 

  127. Taylor, M. S. et al. Delayed alveolar epithelialization: a distinct pathology in diffuse acute lung injury. Am. J. Respir. Crit. Care Med. 197, 522–524 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. Xi, Y. et al. Local lung hypoxia determines epithelial fate decisions during alveolar regeneration. Nat. Cell Biol. 19, 904–914 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Xie, T. et al. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep. 22, 3625–3640 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, C. et al. Expansion of hedgehog disrupts mesenchymal identity and induces emphysema phenotype. J. Clin. Invest. 128, 4343–4358 (2018).

    PubMed  PubMed Central  Google Scholar 

  131. Reyfman, P. A. et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. https://doi.org/10.1164/rccm.201712-2410OC (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ardini-Poleske, M. E. et al. LungMAP: the molecular atlas of lung development program. Am. J. Physiol. Lung Cell. Mol. Physiol. 313, L733–L740 (2017).

    PubMed  PubMed Central  Google Scholar 

  133. Tabula Muris, C. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Google Scholar 

  134. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2018).

    Google Scholar 

  135. Lefrancais, E. et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 544, 105–109 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Thornton, E. E. et al. Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung. J. Exp. Med. 209, 1183–1199 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Boers, J. E., Ambergen, A. W. & Thunnissen, F. B. Number and proliferation of Clara cells in normal human airway epithelium. Am. J. Respir. Crit. Care Med. 159, 1585–1591 (1999).

    CAS  PubMed  Google Scholar 

  138. Boers, J. E., Ambergen, A. W. & Thunnissen, F. B. Number and proliferation of basal and parabasal cells in normal human airway epithelium. Am. J. Respir. Crit. Care Med. 157, 2000–2006 (1998).

    CAS  PubMed  Google Scholar 

  139. Bhatt, S. P. et al. Association between functional small airway disease and FEV1 decline in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 194, 178–184 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Hogg, J. C., Pare, P. D. & Hackett, T. L. The contribution of small airway obstruction to the pathogenesis of chronic obstructive pulmonary disease. Physiol. Rev. 97, 529–552 (2017). This report, along with references therein, provides critical insight into how the structural differences between the human and mouse lung may contribute to disease processes in humans.

    PubMed  PubMed Central  Google Scholar 

  141. Koo, H. K. et al. Small airways disease in mild and moderate chronic obstructive pulmonary disease: a cross-sectional study. Lancet Respir. Med. 6, 591–602 (2018).

    PubMed  Google Scholar 

  142. Vinegar, A., Sinnett, E. E., Kosch, P. C. & Miller, M. L. Pulmonary physiology of the ferret and its potential as a model for inhalation toxicology. Lab Anim. Sci. 35, 246–250 (1985).

    CAS  PubMed  Google Scholar 

  143. Jacob, A. et al. Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell 21, 472–488 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Huang, S. X. et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat. Biotechnol. 32, 84–91 (2014).

    CAS  PubMed  Google Scholar 

  145. McCauley, K. B. et al. Single-cell transcriptomic profiling of pluripotent stem cell-derived SCGB3A2+ airway epithelium. Stem. Cell Rep. 10, 1579–1595 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors apologize for the omission of any references due to the space constraints of this review. The authors acknowledge important support from the National Institutes of Health.

Reviewer information

Nature Reviews Molecular Cell Biology thanks J. Rajagopal, and other, anonymous, reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Edward E. Morrisey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

LungMAP project: https://lungmap.net

Tabula Muris: https://tabula-muris.ds.czbiohub.org

Supplementary information

Glossary

Foregut

The portion of the gut tube that gives rise to several organs, including the oesophagus, stomach and the entire respiratory tract.

Mesenchyme

Mesoderm-derived cells and tissue.

Branching morphogenesis

The developmental process that generates the branched ductal tree-like structures observed in multiple organ systems, including lung, pancreas, kidney, liver, prostate gland, mammary gland and circulatory system. The process is characteristically marked by tube outgrowth and tip branching.

Pseudostratified epithelium

A single layer of epithelial cells all with contacts to the basal laminal surface but with different positions of nuclei, giving the appearance of stratified layers.

Surfactant

A mixture of lipids and proteins that is secreted into the alveolar space to reduce surface tension and prevent lung collapse.

Lateral plate mesoderm

A portion of the primary germ layers of the embryo that resides on the periphery of the embryo and gives rise to the primordial mesoderm surrounding early lung endoderm.

ß-Catenin

A critical protein in the WNT signalling cascade that is retained in the cytoplasm in unstimulated cells. On WNT-ligand stimulation, ß-catenin translocates to the cell nucleus, where it cooperates with TCF/LEF proteins to promote WNT-target gene transcription.

Turing model

A mathematical model of diffusion-driven instability that has been applied to biologically relevant simulations of ligand-driven morphogenetic events.

Chromatin remodelling complex

A complex of proteins that control accessibility of chromatin through modification of histones or DNA.

Lamellar body

A secretory lysosomal-related organelle in the alveolar type 2 cells that stores lung surfactant phospholipids and proteins.

Naphthalene

An aromatic hydrocarbon that is metabolized to a toxic form by the airway epithelial club cell lineage in cells that express the enzyme CYP2F2. It is used to model club cell ablation.

Hippo signalling

A signalling pathway that controls nuclear translocation of the transcription co-activators YAP and TAZ and activation of their target genes that function as a key mechanoresponsive pathway.

Basement membrane

A thin layer of extracellular matrix that provides support and separates epithelia from the surrounding tissue.

Bleomycin

A chemotherapeutic drug that elicits extensive DNA damage. It is used to model lung injury that is associated with severe damage to the epithelium accompanied by stimulation of a fibrotic response from the mesenchyme.

Diphtheria toxin

An exotoxin derived from bacteria that when expressed in a cell-specific manner leads to the selective ablation of that cell type.

Matrigel

A gelatinous mixture of extracellular protein matrix, including laminin, that is used for three-dimensional organoid cell cultures.

Damage- and pathogen-associated molecular patterns

Cellular and microbial by-products that stimulate an inflammatory response.

Innate lymphoid cells

A group of innate immune cells that do not express B or T cell receptors but that exhibit functions analogous to those of helper T cells. These cells are mainly found at mucosal surfaces, such as in the lungs, where they act as critical sentinel cells responding to pathogens and allergens.

M2-polarized macrophages

Macrophage subpopulation that is considered to be more anti-inflammatory in activity and that is typically associated with wound healing responses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zepp, J.A., Morrisey, E.E. Cellular crosstalk in the development and regeneration of the respiratory system. Nat Rev Mol Cell Biol 20, 551–566 (2019). https://doi.org/10.1038/s41580-019-0141-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-019-0141-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing