Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Membrane and organelle dynamics during cell division

Abstract

During division, eukaryotic cells undergo a dramatic, complex and coordinated remodelling of their cytoskeleton and membranes. For cell division to occur, chromosomes must be segregated and new cellular structures, such as the spindle apparatus, must be assembled. Pre-existing organelles, such as the nuclear envelope, endoplasmic reticulum and Golgi apparatus, must be disassembled or remodelled, distributed and reformed. Smaller organelles such as mitochondria as well as cytoplasmic content must also be properly distributed between daughter cells. This mixture of organelles and cytoplasm is bound by a plasma membrane that is itself subject to remodelling as division progresses. The lipids resident in these different membrane compartments play important roles in facilitating the division process. In recent years, we have begun to understand how membrane remodelling is coordinated during division; however, there is still much to learn. In this Review, we discuss recent insights into how these important cellular events are performed and regulated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of organelle dynamics during division.
Fig. 2: Restructuring of the ER and nuclear envelope during cell division.
Fig. 3: Rearrangement of the Golgi during cell division.
Fig. 4: Mitochondrial dynamics during cell division.

Similar content being viewed by others

References

  1. Walczak, C. E., Cai, S. & Khodjakov, A. Mechanisms of chromosome behaviour during mitosis. Nat. Rev. Mol. Cell Biol. 11, 91–102 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Green, R. A., Paluch, E. & Oegema, K. Cytokinesis in animal cells. Annu. Rev. Cell Dev. Biol. 28, 29–58 (2012).

    CAS  PubMed  Google Scholar 

  3. Mierzwa, B. & Gerlich, D. W. Cytokinetic abscission: molecular mechanisms and temporal control. Dev. Cell 31, 525–538 (2014).

    CAS  PubMed  Google Scholar 

  4. Mishra, P. & Chan, D. C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634–646 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Eggert, U. S. et al. Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets. PLoS Biol. 2, e379 (2004).

    PubMed  PubMed Central  Google Scholar 

  6. Echard, A., Hickson, G. R., Foley, E. & O'Farrell, P. H. Terminal cytokinesis events uncovered after an RNAi screen. Curr. Biol. 14, 1685–1693 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kittler, R. et al. Genome-scale RNAi profiling of cell division in human tissue culture cells. Nat. Cell Biol. 9, 1401–1412 (2007).

    CAS  PubMed  Google Scholar 

  8. Sönnichsen, B. et al. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434, 462–469 (2005).

    PubMed  Google Scholar 

  9. Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464, 721–727 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Skop, A. R., Liu, H., Yates, J. III, Meyer, B. J. & Heald, R. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 305, 61–66 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Champion, L., Linder, M. I. & Kutay, U. Cellular reorganization during mitotic entry. Trends Cell Biol. 27, 26–41 (2017).

    PubMed  Google Scholar 

  12. Jongsma, M. L., Berlin, I. & Neefjes, J. On the move: organelle dynamics during mitosis. Trends Cell Biol. 25, 112–124 (2015).

    CAS  PubMed  Google Scholar 

  13. Gould, G. W. Animal cell cytokinesis: the role of dynamic changes in the plasma membrane proteome and lipidome. Semin. Cell Dev. Biol. 53, 64–73 (2016).

    CAS  PubMed  Google Scholar 

  14. Atilla-Gokcumen, G. E., Castoreno, A. B., Sasse, S. & Eggert, U. S. Making the cut: the chemical biology of cytokinesis. ACS Chem. Biol. 5, 79–90 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Storck, E. M., Özbalci, C. & Eggert, U. S. Lipid cell biology: a focus on lipids in cell division. Annu. Rev. Biochem. 87, 839–869 (2018).

    CAS  PubMed  Google Scholar 

  16. Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).

    CAS  PubMed  Google Scholar 

  17. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    PubMed  PubMed Central  Google Scholar 

  18. Sharpe, H. J., Stevens, T. J. & Munro, S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158–169 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Scorrano, L. et al. Coming together to define membrane contact sites. Nat. Commun. 10, 1287 (2019).

    PubMed  PubMed Central  Google Scholar 

  20. Ng, M. M., Chang, F. & Burgess, D. R. Movement of membrane domains and requirement of membrane signaling molecules for cytokinesis. Dev. Cell 9, 781–790 (2005).

    CAS  PubMed  Google Scholar 

  21. Atilla-Gokcumen, G. E. et al. Dividing cells regulate their lipid composition and localization. Cell 156, 428–439 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Atilla-Gokcumen, G. E., Bedigian, A. V., Sasse, S. & Eggert, U. S. Inhibition of glycosphingolipid biosynthesis induces cytokinesis failure. J. Am. Chem. Soc. 133, 10010–10013 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Echard, A. Phosphoinositides and cytokinesis: the “PIP” of the iceberg. Cytoskeleton 69, 893–912 (2012).

    CAS  PubMed  Google Scholar 

  24. Huguet, F., Flynn, S. & Vagnarelli, P. The role of phosphatases in nuclear envelope disassembly and reassembly and their relevance to pathologies. Cells 8, 687 (2019).

    PubMed Central  Google Scholar 

  25. Nasa, I. & Kettenbach, A. N. Coordination of protein kinase and phosphoprotein phosphatase activities in mitosis. Front. Cell Dev. Biol. 6, 30 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Combes, G., Alharbi, I., Braga, L. G. & Elowe, S. Playing polo during mitosis: PLK1 takes the lead. Oncogene 36, 4819–4827 (2017).

    CAS  PubMed  Google Scholar 

  27. Fuller, B. G. et al. Midzone activation of Aurora B in anaphase produces an intracellular phosphorylation gradient. Nature 453, 1132–1136 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Afonso, O. et al. Feedback control of chromosome separation by a midzone Aurora B gradient. Science 345, 332–336 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, E., Ballister, E. R. & Lampson, M. A. Aurora B dynamics at centromeres create a diffusion-based phosphorylation gradient. J. Cell Biol. 194, 539–549 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmitz, M. H. et al. Live-cell imaging RNAi screen identifies PP2A-B55α and importin-β1 as key mitotic exit regulators in human cells. Nat. Cell Biol. 12, 886–893 (2010).

    CAS  PubMed  Google Scholar 

  31. Gharbi-Ayachi, A. et al. The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A. Science 330, 1673–1677 (2010).

    CAS  PubMed  Google Scholar 

  32. Mochida, S., Maslen, S. L., Skehel, M. & Hunt, T. Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis. Science 330, 1670–1673 (2010).

    CAS  PubMed  Google Scholar 

  33. Cundell, M. J. et al. The BEG (PP2A-B55/ENSA/Greatwall) pathway ensures cytokinesis follows chromosome separation. Mol. Cell 52, 393–405 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bollen, M., Peti, W., Ragusa, M. J. & Beullens, M. The extended PP1 toolkit: designed to create specificity. Trends Biochem. Sci. 35, 450–458 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Vagnarelli, P. et al. Repo-Man coordinates chromosomal reorganization with nuclear envelope reassembly during mitotic exit. Dev. Cell 21, 328–342 (2011).

    CAS  PubMed  Google Scholar 

  36. Wurzenberger, C. et al. Sds22 and Repo-Man stabilize chromosome segregation by counteracting Aurora B on anaphase kinetochores. J. Cell Biol. 198, 173–183 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Qian, J., Beullens, M., Lesage, B. & Bollen, M. Aurora B defines its own chromosomal targeting by opposing the recruitment of the phosphatase scaffold Repo-Man. Curr. Biol. 23, 1136–1143 (2013).

    CAS  PubMed  Google Scholar 

  38. Vagnarelli, P. et al. Condensin and Repo-Man-PP1 co-operate in the regulation of chromosome architecture during mitosis. Nat. Cell Biol. 8, 1133–1142 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Grallert, A. et al. A PP1-PP2A phosphatase relay controls mitotic progression. Nature 517, 94–98 (2015).

    CAS  PubMed  Google Scholar 

  40. Holder, J., Poser, E. & Barr, F. A. Getting out of mitosis: spatial and temporal control of mitotic exit and cytokinesis by PP1 and PP2A. FEBS Lett. 593, 2908–2924 (2019).

    CAS  PubMed  Google Scholar 

  41. Gelens, L., Qian, J., Bollen, M. & Saurin, A. T. The importance of kinase-phosphatase integration: lessons from mitosis. Trends Cell Biol. 28, 6–21 (2018).

    CAS  PubMed  Google Scholar 

  42. Wurzenberger, C. & Gerlich, D. W. Phosphatases: providing safe passage through mitotic exit. Nat. Rev. Mol. Cell Biol. 12, 469–482 (2011).

    CAS  PubMed  Google Scholar 

  43. Glotzer, M., Murray, A. W. & Kirschner, M. W. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138 (1991).

    CAS  PubMed  Google Scholar 

  44. Uhlmann, F., Lottspeich, F. & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37–42 (1999).

    CAS  PubMed  Google Scholar 

  45. Lindon, C. & Pines, J. Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J. Cell Biol. 164, 233–241 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Meghini, F. et al. Targeting of Fzr/Cdh1 for timely activation of the APC/C at the centrosome during mitotic exit. Nat. Commun. 7, 12607 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Borg, N. A. & Dixit, V. M. Ubiquitin in cell-cycle regulation and dysregulation in cancer. Annu. Rev. Cancer Biol. 1, 59–77 (2017).

    Google Scholar 

  48. Sivakumar, S. & Gorbsky, G. J. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat. Rev. Mol. Cell Biol. 16, 82–94 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Horn, S. R. et al. Regulation of mitochondrial morphology by APC/CCdh1-mediated control of Drp1 stability. Mol. Biol. Cell 22, 1207–1216 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ramkumar, N. & Baum, B. Coupling changes in cell shape to chromosome segregation. Nat. Rev. Mol. Cell Biol. 17, 511–521 (2016).

    CAS  PubMed  Google Scholar 

  51. Boucrot, E. & Kirchhausen, T. Endosomal recycling controls plasma membrane area during mitosis. Proc. Natl Acad. Sci. USA 104, 7939–7944 (2007).

    CAS  PubMed  Google Scholar 

  52. Kiyomitsu, T. & Cheeseman, I. M. Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase. Cell 154, 391–402 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sedzinski, J. et al. Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476, 462–466 (2011).

    CAS  PubMed  Google Scholar 

  54. Gudejko, H. F., Alford, L. M. & Burgess, D. R. Polar expansion during cytokinesis. Cytoskeleton 69, 1000–1009 (2012).

    CAS  PubMed  Google Scholar 

  55. Fielding, A. B., Willox, A. K., Okeke, E. & Royle, S. J. Clathrin-mediated endocytosis is inhibited during mitosis. Proc. Natl Acad. Sci. USA 109, 6572–6577 (2012).

    CAS  PubMed  Google Scholar 

  56. Hinze, C. & Boucrot, E. Endocytosis in proliferating, quiescent and terminally differentiated cells. J. Cell Sci. 131, jcs216804 (2018).

    PubMed  Google Scholar 

  57. Dix, C. L. et al. The role of mitotic cell-substrate adhesion re-modeling in animal cell division. Dev. Cell 45, 132–145.e3 (2018).

    CAS  PubMed  Google Scholar 

  58. Roubinet, C., Tran, P. T. & Piel, M. Common mechanisms regulating cell cortex properties during cell division and cell migration. Cytoskeleton 69, 957–972 (2012).

    CAS  PubMed  Google Scholar 

  59. Lafaurie-Janvore, J. et al. ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge. Science 339, 1625–1629 (2013).

    CAS  PubMed  Google Scholar 

  60. Uroz, M. et al. Regulation of cell cycle progression by cell-cell and cell-matrix forces. Nat. Cell Biol. 20, 646–654 (2018).

    CAS  PubMed  Google Scholar 

  61. Uroz, M. et al. Traction forces at the cytokinetic ring regulate cell division and polyploidy in the migrating zebrafish epicardium. Nat. Mater. 18, 1015–1023 (2019).

    CAS  PubMed  Google Scholar 

  62. Zhang, X., Bedigian, A. V., Wang, W. & Eggert, U. S. G protein-coupled receptors participate in cytokinesis. Cytoskeleton 69, 810–818 (2012).

    CAS  PubMed  Google Scholar 

  63. Zhang, X. & Eggert, U. S. Non-traditional roles of G protein-coupled receptors in basic cell biology. Mol. Biosyst. 9, 586–595 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Özlu, N. et al. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis. EMBO J. 34, 251–265 (2015).

    PubMed  Google Scholar 

  65. Kusumi, A. et al. Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson's fluid-mosaic model. Annu. Rev. Cell Dev. Biol. 28, 215–250 (2012).

    CAS  PubMed  Google Scholar 

  66. Köster, D. V. & Mayor, S. Cortical actin and the plasma membrane: inextricably intertwined. Curr. Opin. Cell Biol. 38, 81–89 (2016).

    PubMed  Google Scholar 

  67. Trimble, W. S. & Grinstein, S. Barriers to the free diffusion of proteins and lipids in the plasma membrane. J. Cell Biol. 208, 259–271 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. Schmidt, K. & Nichols, B. J. A barrier to lateral diffusion in the cleavage furrow of dividing mammalian cells. Curr. Biol. 14, 1002–1006 (2004).

    CAS  PubMed  Google Scholar 

  69. Piekny, A. J. & Glotzer, M. Anillin is a scaffold protein that links RhoA, actin, and myosin during cytokinesis. Curr. Biol. 18, 30–36 (2008).

    CAS  PubMed  Google Scholar 

  70. Kunda, P., Pelling, A. E., Liu, T. & Baum, B. Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr. Biol. 18, 91–101 (2008).

    CAS  PubMed  Google Scholar 

  71. Jordan, S. N. & Canman, J. C. Rho GTPases in animal cell cytokinesis: an occupation by the one percent. Cytoskeleton 69, 919–930 (2012).

    CAS  PubMed  Google Scholar 

  72. Lekomtsev, S. et al. Centralspindlin links the mitotic spindle to the plasma membrane during cytokinesis. Nature 492, 276–279 (2012).

    CAS  PubMed  Google Scholar 

  73. Kotýnková, K., Su, K. C., West, S. C. & Petronczki, M. Plasma membrane association but not midzone recruitment of RhoGEF ECT2 is essential for cytokinesis. Cell Rep. 17, 2672–2686 (2016).

    PubMed  PubMed Central  Google Scholar 

  74. Terry, S. J., Dona, F., Osenberg, P., Carlton, J. G. & Eggert, U. S. Capping protein regulates actin dynamics during cytokinetic midbody maturation. Proc. Natl Acad. Sci. USA 115, 2138–2143 (2018).

    CAS  PubMed  Google Scholar 

  75. Giansanti, M. G. et al. Cooperative interactions between the central spindle and the contractile ring during Drosophila cytokinesis. Genes Dev. 12, 396–410 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kusano, K., Abe, H. & Obinata, T. Detection of a sequence involved in actin-binding and phosphoinositide-binding in the N-terminal side of cofilin. Mol. Cell. Biochem. 190, 133–141 (1999).

    CAS  PubMed  Google Scholar 

  77. Liu, X. et al. Mammalian nonmuscle myosin II binds to anionic phospholipids with concomitant dissociation of the regulatory light chain. J. Biol. Chem. 291, 24828–24837 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Güttinger, S., Laurell, E. & Kutay, U. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat. Rev. Mol. Cell Biol. 10, 178–191 (2009).

    PubMed  Google Scholar 

  79. de Leeuw, R., Gruenbaum, Y. & Medalia, O. Nuclear lamins: thin filaments with major functions. Trends Cell Biol. 28, 34–45 (2018).

    PubMed  Google Scholar 

  80. Hampoelz, B., Andres-Pons, A., Kastritis, P. & Beck, M. Structure and assembly of the nuclear pore complex. Annu. Rev. Biophys. 48, 515–536 (2019).

    CAS  PubMed  Google Scholar 

  81. Chang, W., Worman, H. J. & Gundersen, G. G. Accessorizing and anchoring the LINC complex for multifunctionality. J. Cell Biol. 208, 11–22 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ungricht, R., Klann, M., Horvath, P. & Kutay, U. Diffusion and retention are major determinants of protein targeting to the inner nuclear membrane. J. Cell Biol. 209, 687–703 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Boni, A. et al. Live imaging and modeling of inner nuclear membrane targeting reveals its molecular requirements in mammalian cells. J. Cell Biol. 209, 705–720 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Voeltz, G. K., Prinz, W. A., Shibata, Y., Rist, J. M. & Rapoport, T. A. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573–586 (2006).

    CAS  PubMed  Google Scholar 

  85. Hu, J. et al. Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 319, 1247–1250 (2008).

    CAS  PubMed  Google Scholar 

  86. Hu, J. et al. A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell 138, 549–561 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen, S., Novick, P. & Ferro-Novick, S. ER network formation requires a balance of the dynamin-like GTPase Sey1p and the Lunapark family member Lnp1p. Nat. Cell Biol. 14, 707–716 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Shibata, Y. et al. Mechanisms determining the morphology of the peripheral ER. Cell 143, 774–788 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Nixon-Abell, J. et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354, aaf3928 (2016).

    PubMed  PubMed Central  Google Scholar 

  90. Schroeder, L. K. et al. Dynamic nanoscale morphology of the ER surveyed by STED microscopy. J. Cell Biol. 218, 83–96 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Westrate, L. M., Lee, J. E., Prinz, W. A. & Voeltz, G. K. Form follows function: the importance of endoplasmic reticulum shape. Annu. Rev. Biochem. 84, 791–811 (2015).

    CAS  PubMed  Google Scholar 

  92. Zhang, H. & Hu, J. Shaping the endoplasmic reticulum into a social network. Trends Cell Biol. 26, 934–943 (2016).

    CAS  PubMed  Google Scholar 

  93. Peter, M., Nakagawa, J., Dorée, M., Labbe, J. C. & Nigg, E. A. Identification of major nucleolar proteins as candidate mitotic substrates of cdc2 kinase. Cell 60, 791–801 (1990).

    CAS  PubMed  Google Scholar 

  94. Heald, R. & McKeon, F. Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell 61, 579–589 (1990).

    CAS  PubMed  Google Scholar 

  95. Torvaldson, E., Kochin, V. & Eriksson, J. E. Phosphorylation of lamins determine their structural properties and signaling functions. Nucleus 6, 166–171 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Goss, V. L. et al. Identification of nuclear βII protein kinase C as a mitotic lamin kinase. J. Biol. Chem. 269, 19074–19080 (1994).

    CAS  PubMed  Google Scholar 

  97. Mall, M. et al. Mitotic lamin disassembly is triggered by lipid-mediated signaling. J. Cell Biol. 198, 981–990 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Patel, J. T. et al. Mitotic phosphorylation of SUN1 loosens its connection with the nuclear lamina while the LINC complex remains intact. Nucleus 5, 462–473 (2014).

    PubMed  PubMed Central  Google Scholar 

  99. Bahmanyar, S. et al. Spatial control of phospholipid flux restricts endoplasmic reticulum sheet formation to allow nuclear envelope breakdown. Genes Dev. 28, 121–126 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Audhya, A., Desai, A. & Oegema, K. A role for Rab5 in structuring the endoplasmic reticulum. J. Cell Biol. 178, 43–56 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hebbar, S. et al. Lis1 and Ndel1 influence the timing of nuclear envelope breakdown in neural stem cells. J. Cell Biol. 182, 1063–1071 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Beaudouin, J., Gerlich, D., Daigle, N., Eils, R. & Ellenberg, J. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108, 83–96 (2002).

    CAS  PubMed  Google Scholar 

  103. Salina, D. et al. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108, 97–107 (2002).

    CAS  PubMed  Google Scholar 

  104. Turgay, Y. et al. SUN proteins facilitate the removal of membranes from chromatin during nuclear envelope breakdown. J. Cell Biol. 204, 1099–1109 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Mori, M. et al. An Arp2/3 nucleated F-actin shell fragments nuclear membranes at nuclear envelope breakdown in starfish oocytes. Curr. Biol. 24, 1421–1428 (2014).

    CAS  PubMed  Google Scholar 

  106. Laurell, E. et al. Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell 144, 539–550 (2011).

    CAS  PubMed  Google Scholar 

  107. Yang, L., Guan, T. & Gerace, L. Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis. J. Cell Biol. 137, 1199–1210 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Daigle, N. et al. Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J. Cell Biol. 154, 71–84 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Linder, M. I. et al. Mitotic disassembly of nuclear pore complexes involves CDK1- and PLK1-mediated phosphorylation of key interconnecting nucleoporins. Dev. Cell 43, 141–156.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Martino, L. et al. Channel nucleoporins recruit PLK-1 to nuclear pore complexes to direct nuclear envelope breakdown in C. elegans. Dev. Cell 43, 157–171.e7 (2017).

    CAS  PubMed  Google Scholar 

  111. de Castro, I. J., Gil, R. S., Ligammari, L., Di Giacinto, M. L. & Vagnarelli, P. CDK1 and PLK1 coordinate the disassembly and reassembly of the nuclear envelope in vertebrate mitosis. Oncotarget 9, 7763–7773 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Lu, L., Ladinsky, M. S. & Kirchhausen, T. Cisternal organization of the endoplasmic reticulum during mitosis. Mol. Biol. Cell 20, 3471–3480 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lu, L., Ladinsky, M. S. & Kirchhausen, T. Formation of the postmitotic nuclear envelope from extended ER cisternae precedes nuclear pore assembly. J. Cell Biol. 194, 425–440 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Puhka, M., Vihinen, H., Joensuu, M. & Jokitalo, E. Endoplasmic reticulum remains continuous and undergoes sheet-to-tubule transformation during cell division in mammalian cells. J. Cell Biol. 179, 895–909 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Puhka, M., Joensuu, M., Vihinen, H., Belevich, I. & Jokitalo, E. Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells. Mol. Biol. Cell 23, 2424–2432 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kumar, D., Golchoubian, B., Belevich, I., Jokitalo, E. & Schlaitz, A. L. REEP3 and REEP4 determine the tubular morphology of the endoplasmic reticulum during mitosis. Mol. Biol. Cell 30, 1377–1389 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Schweizer, N. & Maiato, H. Membrane-based mechanisms of mitotic spindle assembly. Commun. Integr. Biol. 8, e1112473 (2015).

    PubMed  PubMed Central  Google Scholar 

  118. Wang, S., Powers, R. E., Gold, V. A. & Rapoport, T. A. The ER morphology-regulating lunapark protein induces the formation of stacked bilayer discs. Life Sci. Alliance 1, e201700014 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. Wang, S., Tukachinsky, H., Romano, F. B. & Rapoport, T. A. Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network. eLife 5, e18605 (2016).

    PubMed  PubMed Central  Google Scholar 

  120. Vedrenne, C., Klopfenstein, D. R. & Hauri, H. P. Phosphorylation controls CLIMP-63-mediated anchoring of the endoplasmic reticulum to microtubules. Mol. Biol. Cell 16, 1928–1937 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Smyth, J. T., Beg, A. M., Wu, S., Putney, J. W. Jr & Rusan, N. M. Phosphoregulation of STIM1 leads to exclusion of the endoplasmic reticulum from the mitotic spindle. Curr. Biol. 22, 1487–1493 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Schlaitz, A. L., Thompson, J., Wong, C. C., Yates, J. R. III & Heald, R. REEP3/4 ensure endoplasmic reticulum clearance from metaphase chromatin and proper nuclear envelope architecture. Dev. Cell 26, 315–323 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Smyth, J. T., Schoborg, T. A., Bergman, Z. J., Riggs, B. & Rusan, N. M. Proper symmetric and asymmetric endoplasmic reticulum partitioning requires astral microtubules. Open Biol. 5, 150067 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. Champion, L., Pawar, S., Luithle, N., Ungricht, R. & Kutay, U. Dissociation of membrane-chromatin contacts is required for proper chromosome segregation in mitosis. Mol. Biol. Cell 30, 427–440 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Schellhaus, A. K., De Magistris, P. & Antonin, W. Nuclear reformation at the end of mitosis. J. Mol. Biol. 428, 1962–1985 (2016).

    CAS  PubMed  Google Scholar 

  126. Anderson, D. J. & Hetzer, M. W. Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum. Nat. Cell Biol. 9, 1160–1166 (2007).

    CAS  PubMed  Google Scholar 

  127. Anderson, D. J. & Hetzer, M. W. Reshaping of the endoplasmic reticulum limits the rate for nuclear envelope formation. J. Cell Biol. 182, 911–924 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Samwer, M. et al. DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes. Cell 170, 956–972.e23 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Allen, P. B., Kwon, Y. G., Nairn, A. C. & Greengard, P. Isolation and characterization of PNUTS, a putative protein phosphatase 1 nuclear targeting subunit. J. Biol. Chem. 273, 4089–4095 (1998).

    CAS  PubMed  Google Scholar 

  130. Steen, R. L., Martins, S. B., Tasken, K. & Collas, P. Recruitment of protein phosphatase 1 to the nuclear envelope by A-kinase anchoring protein AKAP149 is a prerequisite for nuclear lamina assembly. J. Cell Biol. 150, 1251–1262 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Booth, D. G. et al. Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery. eLife 3, e01641 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. Takagi, M., Nishiyama, Y., Taguchi, A. & Imamoto, N. Ki67 antigen contributes to the timely accumulation of protein phosphatase 1γ on anaphase chromosomes. J. Biol. Chem. 289, 22877–22887 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Karg, T., Warecki, B. & Sullivan, W. Aurora B-mediated localized delays in nuclear envelope formation facilitate inclusion of late-segregating chromosome fragments. Mol. Biol. Cell 26, 2227–2241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Liu, S. et al. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 561, 551–555 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Otsuka, S. et al. Postmitotic nuclear pore assembly proceeds by radial dilation of small membrane openings. Nat. Struct. Mol. Biol. 25, 21–28 (2018).

    CAS  PubMed  Google Scholar 

  136. Otsuka, S. et al. Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope. eLife 5, e19071 (2016).

    PubMed  PubMed Central  Google Scholar 

  137. Clever, M., Funakoshi, T., Mimura, Y., Takagi, M. & Imamoto, N. The nucleoporin ELYS/Mel28 regulates nuclear envelope subdomain formation in HeLa cells. Nucleus 3, 187–199 (2012).

    PubMed  PubMed Central  Google Scholar 

  138. Olmos, Y., Hodgson, L., Mantell, J., Verkade, P. & Carlton, J. G. ESCRT-III controls nuclear envelope reformation. Nature 522, 236–239 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Vietri, M. et al. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 522, 231–235 (2015).

    CAS  PubMed  Google Scholar 

  140. Olmos, Y., Perdrix-Rosell, A. & Carlton, J. G. Membrane binding by CHMP7 coordinates ESCRT-III-dependent nuclear envelope reformation. Curr. Biol. 26, 2635–2641 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Gu, M. et al. LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells. Proc. Natl Acad. Sci. USA 114, E2166–E2175 (2017).

    CAS  PubMed  Google Scholar 

  142. Campsteijn, C., Vietri, M. & Stenmark, H. Novel ESCRT functions in cell biology: spiraling out of control? Curr. Opin. Cell Biol. 41, 1–8 (2016).

    CAS  PubMed  Google Scholar 

  143. Gatta, A. T. & Carlton, J. G. The ESCRT-machinery: closing holes and expanding roles. Curr. Opin. Cell Biol. 59, 121–132 (2019).

    CAS  PubMed  Google Scholar 

  144. Schöneberg, J., Lee, I. H., Iwasa, J. H. & Hurley, J. H. Reverse-topology membrane scission by the ESCRT proteins. Nat. Rev. Mol. Cell Biol. 18, 5–17 (2017).

    PubMed  Google Scholar 

  145. Barr, F. A., Puype, M., Vandekerckhove, J. & Warren, G. GRASP65, a protein involved in the stacking of Golgi cisternae. Cell 91, 253–262 (1997).

    CAS  PubMed  Google Scholar 

  146. Shorter, J. et al. GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system. EMBO J. 18, 4949–4960 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Witkos, T. M. & Lowe, M. The golgin family of coiled-coil tethering proteins. Front. Cell Dev. Biol. 3, 86 (2015).

    PubMed  Google Scholar 

  148. Diao, A., Frost, L., Morohashi, Y. & Lowe, M. Coordination of golgin tethering and SNARE assembly: GM130 binds syntaxin 5 in a p115-regulated manner. J. Biol. Chem. 283, 6957–6967 (2008).

    CAS  PubMed  Google Scholar 

  149. Hidalgo Carcedo, C. et al. Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/BARS. Science 305, 93–96 (2004).

    PubMed  Google Scholar 

  150. Colanzi, A. et al. The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2. EMBO J. 26, 2465–2476 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Lin, C. Y. et al. Peripheral Golgi protein GRASP65 is a target of mitotic polo-like kinase (Plk) and Cdc2. Proc. Natl Acad. Sci. USA 97, 12589–12594 (2000).

    CAS  PubMed  Google Scholar 

  152. Sütterlin, C., Hsu, P., Mallabiabarrena, A. & Malhotra, V. Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Cell 109, 359–369 (2002).

    PubMed  Google Scholar 

  153. Wang, Y., Seemann, J., Pypaert, M., Shorter, J. & Warren, G. A direct role for GRASP65 as a mitotically regulated Golgi stacking factor. EMBO J. 22, 3279–3290 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Preisinger, C. et al. Plk1 docking to GRASP65 phosphorylated by Cdk1 suggests a mechanism for Golgi checkpoint signalling. EMBO J. 24, 753–765 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Tang, D., Yuan, H., Vielemeyer, O., Perez, F. & Wang, Y. Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly. Biol. Open 1, 1204–1214 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Ayala, I., Crispino, R. & Colanzi, A. GRASP65 controls Golgi position and structure during G2/M transition by regulating the stability of microtubules. Traffic 20, 785–802 (2019).

    CAS  PubMed  Google Scholar 

  157. Persico, A., Cervigni, R. I., Barretta, M. L., Corda, D. & Colanzi, A. Golgi partitioning controls mitotic entry through Aurora-A kinase. Mol. Biol. Cell 21, 3708–3721 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Guizzunti, G. & Seemann, J. Mitotic Golgi disassembly is required for bipolar spindle formation and mitotic progression. Proc. Natl Acad. Sci. USA 113, E6590–E6599 (2016).

    CAS  PubMed  Google Scholar 

  159. Rabouille, C. & Kondylis, V. Golgi ribbon unlinking: an organelle-based G2/M checkpoint. Cell Cycle 6, 2723–2729 (2007).

    CAS  PubMed  Google Scholar 

  160. Corda, D., Barretta, M. L., Cervigni, R. I. & Colanzi, A. Golgi complex fragmentation in G2/M transition: an organelle-based cell-cycle checkpoint. IUBMB Life 64, 661–670 (2012).

    CAS  PubMed  Google Scholar 

  161. Levine, T. P., Rabouille, C., Kieckbusch, R. H. & Warren, G. Binding of the vesicle docking protein p115 to Golgi membranes is inhibited under mitotic conditions. J. Biol. Chem. 271, 17304–17311 (1996).

    CAS  PubMed  Google Scholar 

  162. Lowe, M. et al. Cdc2 kinase directly phosphorylates the cis-Golgi matrix protein GM130 and is required for Golgi fragmentation in mitosis. Cell 94, 783–793 (1998).

    CAS  PubMed  Google Scholar 

  163. Nakamura, N., Lowe, M., Levine, T. P., Rabouille, C. & Warren, G. The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell 89, 445–455 (1997).

    CAS  PubMed  Google Scholar 

  164. Tang, D. et al. The ubiquitin ligase HACE1 regulates Golgi membrane dynamics during the cell cycle. Nat. Commun. 2, 501 (2011).

    PubMed  PubMed Central  Google Scholar 

  165. Huang, S., Tang, D. & Wang, Y. Monoubiquitination of syntaxin 5 regulates Golgi membrane dynamics during the cell cycle. Dev. Cell 38, 73–85 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhang, X. & Wang, Y. Cell cycle regulation of VCIP135 deubiquitinase activity and function in p97/p47-mediated Golgi reassembly. Mol. Biol. Cell 26, 2242–2251 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhang, X., Zhang, H. & Wang, Y. Phosphorylation regulates VCIP135 function in Golgi membrane fusion during the cell cycle. J. Cell Sci. 127, 172–181 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Uchiyama, K. et al. The localization and phosphorylation of p47 are important for Golgi disassembly-assembly during the cell cycle. J. Cell Biol. 161, 1067–1079 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Wei, J. H., Zhang, Z. C., Wynn, R. M. & Seemann, J. GM130 regulates Golgi-derived spindle assembly by activating TPX2 and capturing microtubules. Cell 162, 287–299 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Altan-Bonnet, N., Phair, R. D., Polishchuk, R. S., Weigert, R. & Lippincott-Schwartz, J. A role for Arf1 in mitotic Golgi disassembly, chromosome segregation, and cytokinesis. Proc. Natl Acad. Sci. USA 100, 13314–13319 (2003).

    CAS  PubMed  Google Scholar 

  171. Zaal, K. J. et al. Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell 99, 589–601 (1999).

    CAS  PubMed  Google Scholar 

  172. Altan-Bonnet, N., Sougrat, R. & Lippincott-Schwartz, J. Molecular basis for Golgi maintenance and biogenesis. Curr. Opin. Cell Biol. 16, 364–372 (2004).

    CAS  PubMed  Google Scholar 

  173. Valente, C. & Colanzi, A. Mechanisms and regulation of the mitotic inheritance of the Golgi complex. Front. Cell Dev. Biol. 3, 79 (2015).

    PubMed  PubMed Central  Google Scholar 

  174. Bayliss, R., Sardon, T., Vernos, I. & Conti, E. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol. Cell 12, 851–862 (2003).

    CAS  PubMed  Google Scholar 

  175. Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, a novel xenopus MAP involved in spindle pole organization. J. Cell Biol. 149, 1405–1418 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Gruss, O. J. et al. Ran induces spindle assembly by reversing the inhibitory effect of importin α on TPX2 activity. Cell 104, 83–93 (2001).

    CAS  PubMed  Google Scholar 

  177. Giesecke, A. & Stewart, M. Novel binding of the mitotic regulator TPX2 (target protein for Xenopus kinesin-like protein 2) to importin-α. J. Biol. Chem. 285, 17628–17635 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Radulescu, A. E., Mukherjee, S. & Shields, D. The Golgi protein p115 associates with gamma-tubulin and plays a role in Golgi structure and mitosis progression. J. Biol. Chem. 286, 21915–21926 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Lowe, M., Gonatas, N. K. & Warren, G. The mitotic phosphorylation cycle of the cis-Golgi matrix protein GM130. J. Cell Biol. 149, 341–356 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Wang, Y., Satoh, A., Warren, G. & Meyer, H. H. VCIP135 acts as a deubiquitinating enzyme during p97-p47-mediated reassembly of mitotic Golgi fragments. J. Cell Biol. 164, 973–978 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Tang, D., Mar, K., Warren, G. & Wang, Y. Molecular mechanism of mitotic Golgi disassembly and reassembly revealed by a defined reconstitution assay. J. Biol. Chem. 283, 6085–6094 (2008).

    CAS  PubMed  Google Scholar 

  182. Tang, D., Yuan, H. & Wang, Y. The role of GRASP65 in Golgi cisternal stacking and cell cycle progression. Traffic 11, 827–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Miller, P. M. et al. Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat. Cell Biol. 11, 1069–1080 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Shima, D. T., Cabrera-Poch, N., Pepperkok, R. & Warren, G. An ordered inheritance strategy for the Golgi apparatus: visualization of mitotic disassembly reveals a role for the mitotic spindle. J. Cell Biol. 141, 955–966 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Gaietta, G. M. et al. Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy. Proc. Natl Acad. Sci. USA 103, 17777–17782 (2006).

    CAS  PubMed  Google Scholar 

  186. Goss, J. W. & Toomre, D. K. Both daughter cells traffic and exocytose membrane at the cleavage furrow during mammalian cytokinesis. J. Cell Biol. 181, 1047–1054 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Magliozzi, R. et al. Inheritance of the Golgi apparatus and cytokinesis are controlled by degradation of GBF1. Cell Rep. 23, 3381–3391.e4 (2018).

    CAS  PubMed  Google Scholar 

  188. Labbé, K., Murley, A. & Nunnari, J. Determinants and functions of mitochondrial behavior. Annu. Rev. Cell Dev. Biol. 30, 357–391 (2014).

    PubMed  Google Scholar 

  189. Kashatus, D. F. et al. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat. Cell Biol. 13, 1108–1115 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Kanfer, G. & Kornmann, B. Dynamics of the mitochondrial network during mitosis. Biochem. Soc. Trans. 44, 510–516 (2016).

    CAS  PubMed  Google Scholar 

  191. Park, Y. Y. & Cho, H. Mitofusin 1 is degraded at G2/M phase through ubiquitylation by MARCH5. Cell Div. 7, 25 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Adachi, Y. et al. Coincident phosphatidic acid interaction restrains Drp1 in mitochondrial division. Mol. Cell 63, 1034–1043 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Pagliuso, A. et al. A role for septin 2 in Drp1-mediated mitochondrial fission. EMBO Rep. 17, 858–873 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Katajisto, P. et al. Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348, 340–343 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Jajoo, R. et al. Accurate concentration control of mitochondria and nucleoids. Science 351, 169–172 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Lawrence, E. J., Boucher, E. & Mandato, C. A. Mitochondria-cytoskeleton associations in mammalian cytokinesis. Cell Div. 11, 3 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Chung, J. Y., Steen, J. A. & Schwarz, T. L. Phosphorylation-induced motor shedding is required at mitosis for proper distribution and passive inheritance of mitochondria. Cell Rep. 16, 2142–2155 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. López-Domenech, G. et al. Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution. EMBO J. 37, 321–336 (2018).

    PubMed  PubMed Central  Google Scholar 

  199. Rohn, J. L. et al. Myo19 ensures symmetric partitioning of mitochondria and coupling of mitochondrial segregation to cell division. Curr. Biol. 24, 2598–2605 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Salazar-Roa, M. & Malumbres, M. Fueling the cell division cycle. Trends Cell Biol. 27, 69–81 (2017).

    CAS  PubMed  Google Scholar 

  201. Hehnly, H. & Doxsey, S. Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev. Cell 28, 497–507 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Takatsu, H. et al. Mitosis-coupled, microtubule-dependent clustering of endosomal vesicles around centrosomes. Cell Struct. Funct. 38, 31–41 (2013).

    CAS  PubMed  Google Scholar 

  203. Royle, S. J., Bright, N. A. & Lagnado, L. Clathrin is required for the function of the mitotic spindle. Nature 434, 1152–1157 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Derivery, E. et al. Polarized endosome dynamics by spindle asymmetry during asymmetric cell division. Nature 528, 280–285 (2015).

    CAS  PubMed  Google Scholar 

  205. Zhang, X. et al. Dopamine receptor D3 regulates endocytic sorting by a prazosin-sensitive interaction with the coatomer COPI. Proc. Natl Acad. Sci. USA 109, 12485–12490 (2012).

    CAS  PubMed  Google Scholar 

  206. Guizetti, J. et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331, 1616–1620 (2011).

    CAS  PubMed  Google Scholar 

  207. König, J., Frankel, E. B., Audhya, A. & Muller-Reichert, T. Membrane remodeling during embryonic abscission in Caenorhabditis elegans. J. Cell Biol. 216, 1277–1286 (2017).

    PubMed  PubMed Central  Google Scholar 

  208. Gromley, A. et al. Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123, 75–87 (2005).

    CAS  PubMed  Google Scholar 

  209. Wilson, G. M. et al. The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis. Mol. Biol. Cell 16, 849–860 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Fielding, A. B. et al. Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J. 24, 3389–3399 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Kouranti, I., Sachse, M., Arouche, N., Goud, B. & Echard, A. Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr. Biol. 16, 1719–1725 (2006).

    CAS  PubMed  Google Scholar 

  212. Low, S. H. et al. Syntaxin 2 and endobrevin are required for the terminal step of cytokinesis in mammalian cells. Dev. Cell 4, 753–759 (2003).

    CAS  PubMed  Google Scholar 

  213. Neto, H., Kaupisch, A., Collins, L. L. & Gould, G. W. Syntaxin 16 is a master recruitment factor for cytokinesis. Mol. Biol. Cell 24, 3663–3674 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Frémont, S. et al. Oxidation of F-actin controls the terminal steps of cytokinesis. Nat. Commun. 8, 14528 (2017).

    PubMed  PubMed Central  Google Scholar 

  215. Schiel, J. A. et al. FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis. Nat. Cell Biol. 14, 1068–1078 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Fremont, S. & Echard, A. Membrane traffic in the late steps of cytokinesis. Curr. Biol. 28, R458–R470 (2018).

    CAS  PubMed  Google Scholar 

  217. Eskelinen, E. L. et al. Inhibition of autophagy in mitotic animal cells. Traffic 3, 878–893 (2002).

    CAS  PubMed  Google Scholar 

  218. Li, Z., Ji, X., Wang, D., Liu, J. & Zhang, X. Autophagic flux is highly active in early mitosis and differentially regulated throughout the cell cycle. Oncotarget 7, 39705–39718 (2016).

    PubMed  PubMed Central  Google Scholar 

  219. Pohl, C. & Jentsch, S. Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat. Cell Biol. 11, 65–70 (2009).

    CAS  PubMed  Google Scholar 

  220. Crowell, E. F., Gaffuri, A. L., Gayraud-Morel, B., Tajbakhsh, S. & Echard, A. Engulfment of the midbody remnant after cytokinesis in mammalian cells. J. Cell Sci. 127, 3840–3851 (2014).

    CAS  PubMed  Google Scholar 

  221. Walther, T. C., Chung, J. & Farese, R. V. Jr. Lipid droplet biogenesis. Annu. Rev. Cell Dev. Biol. 33, 491–510 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Cruz, A. L. S. et al. Cell cycle progression regulates biogenesis and cellular localization of lipid droplets. Mol. Cell Biol. 39, e00374–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Kredel, S. et al. mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. PLoS ONE 4, e4391 (2009).

    PubMed  PubMed Central  Google Scholar 

  224. Knoblach, B. & Rachubinski, R. A. How peroxisomes partition between cells. A story of yeast, mammals and filamentous fungi. Curr. Opin. Cell Biol. 41, 73–80 (2016).

    CAS  PubMed  Google Scholar 

  225. Asare, A., Levorse, J. & Fuchs, E. Coupling organelle inheritance with mitosis to balance growth and differentiation. Science 355, eaah4701(2017).

    PubMed  PubMed Central  Google Scholar 

  226. Wong, R. et al. PIP2 hydrolysis and calcium release are required for cytokinesis in drosophila spermatocytes. Curr. Biol. 15, 1401–1406 (2005).

    CAS  PubMed  Google Scholar 

  227. Dambournet, D. et al. Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis. Nat. Cell Biol. 13, 981–988 (2011).

    CAS  PubMed  Google Scholar 

  228. Carim, S. C. et al. IPIP27 coordinates PtdIns(4,5)P2 homeostasis for successful cytokinesis. Curr. Biol. 29, 775–789.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Sechi, S. et al. GOLPH3 is essential for contractile ring formation and Rab11 localization to the cleavage site during cytokinesis in Drosophila melanogaster. PLoS Genet. 10, e1004305 (2014).

    PubMed  PubMed Central  Google Scholar 

  230. Reinecke, J. B., Katafiasz, D., Naslavsky, N. & Caplan, S. Novel functions for the endocytic regulatory proteins MICAL-L1 and EHD1 in mitosis. Traffic 16, 48–67 (2015).

    CAS  PubMed  Google Scholar 

  231. Liu, Q. et al. MICAL3 flavoprotein monooxygenase forms a complex with centralspindlin and regulates cytokinesis. J. Biol. Chem. 291, 20617–20629 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Fabbro, M. et al. Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis. Dev. Cell 9, 477–488 (2005).

    CAS  PubMed  Google Scholar 

  233. Carlton, J. G., Agromayor, M. & Martin-Serrano, J. Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc. Natl Acad. Sci. USA 105, 10541–10546 (2008).

    CAS  PubMed  Google Scholar 

  234. Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007).

    CAS  PubMed  Google Scholar 

  235. Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215–4227 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Christ, L. et al. ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. J. Cell Biol. 212, 499–513 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Mierzwa, B. E. et al. Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nat. Cell Biol. 19, 787–798 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Goliand, I. et al. Resolving ESCRT-III spirals at the intercellular bridge of dividing cells using 3D STORM. Cell Rep. 24, 1756–1764 (2018).

    CAS  PubMed  Google Scholar 

  239. Matias, N. R., Mathieu, J. & Huynh, J. R. Abscission is regulated by the ESCRT-III protein shrub in Drosophila germline stem cells. PLoS Genet. 11, e1004653 (2015).

    PubMed  PubMed Central  Google Scholar 

  240. Eikenes, A. H. et al. ALIX and ESCRT-III coordinately control cytokinetic abscission during germline stem cell division in vivo. PLoS Genet. 11, e1004904 (2015).

    PubMed  PubMed Central  Google Scholar 

  241. Iwamori, T. et al. TEX14 interacts with CEP55 to block cell abscission. Mol. Cell. Biol. 30, 2280–2292 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Samson, R. Y., Obita, T., Freund, S. M., Williams, R. L. & Bell, S. D. A role for the ESCRT system in cell division in archaea. Science 322, 1710–1713 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Karasmanis, E. P. et al. A septin double ring controls the spatiotemporal organization of the ESCRT machinery in cytokinetic abscission. Curr. Biol. 29, 2174–2182.e7 (2019).

    CAS  PubMed  Google Scholar 

  244. Liu, T. L. et al. Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science 360, eaaq1392 (2018).

    PubMed  PubMed Central  Google Scholar 

  245. Cai, Y. et al. Experimental and computational framework for a dynamic protein atlas of human cell division. Nature 561, 411–415 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Xu, W., Zeng, Z., Jiang, J. H., Chang, Y. T. & Yuan, L. Discerning the chemistry in individual organelles with small-molecule fluorescent probes. Angew. Chem. Int. Ed. 55, 13658–13699 (2016).

    CAS  Google Scholar 

  247. Takakura, H. et al. Long time-lapse nanoscopy with spontaneously blinking membrane probes. Nat. Biotechnol. 35, 773–780 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Zhang, H. et al. Optogenetic control of kinetochore function. Nat. Chem. Biol. 13, 1096–1101 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Yu, F. et al. Remodeling of ER-plasma membrane contact sites but not STIM1 phosphorylation inhibits Ca2+ influx in mitosis. Proc. Natl Acad. Sci. USA 116, 10392–10401 (2019).

    CAS  PubMed  Google Scholar 

  250. Tiwary, A. K. & Zheng, Y. Protein phase separation in mitosis. Curr. Opin. Cell Biol. 60, 92–98 (2019).

    CAS  PubMed  Google Scholar 

  251. Rai, A. K., Chen, J. X., Selbach, M. & Pelkmans, L. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature 559, 211–216 (2018).

    CAS  PubMed  Google Scholar 

  252. Musacchio, A. The molecular biology of spindle assembly checkpoint signaling Dynamics. Curr. Biol. 25, R1002–1018 (2015).

    CAS  PubMed  Google Scholar 

  253. Muro, E., Atilla-Gokcumen, G. E. & Eggert, U. S. Lipids in cell biology: how can we understand them better? Mol. Biol. Cell 25, 1819–1823 (2014).

    PubMed  PubMed Central  Google Scholar 

  254. Brügger, B. Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu. Rev. Biochem. 83, 79–98 (2014).

    PubMed  Google Scholar 

Download references

Acknowledgements

Work on membrane dynamics in the authors’ laboratories is funded by Wellcome Trust Investigator Award 110060/Z/15/Z (to U.E.) and Wellcome Trust Senior Fellowship 206346/Z/17/Z (to J.G.C). The Francis Crick Institute receives core funding from Cancer Research UK (FC001092), the UK Medical Research Council (FC001092) and the Wellcome Trust (FC001092).

Author information

Authors and Affiliations

Authors

Contributions

J.G.C. and U.S.E. contributed to all aspects of the article. H.J. researched data for the article and contributed to the writing, reviewing and editing of the manuscript.

Corresponding authors

Correspondence to Jeremy G. Carlton or Ulrike S. Eggert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

HUGO Gene Nomenclature Committee: https://www.genenames.org/

Supplementary information

Glossary

Mitotic spindle

A cytoskeletal structure, consisting primarily of microtubules, built during division to enable the segregation of duplicated chromatids into daughter cells.

Midbody

A transient microtubule-rich structure in mammalian cells that forms from the condensed spindle and represents the final connection between daughter cells.

Cytokinetic abscission

The terminal phase of cytokinesis, where the midbody is severed to produce two daughter cells.

Phosphoinositides

Also known as phosphatidylinositol phosphates. Differentially phosphorylated signalling lipids with many roles, involved in defining the identities of different membrane compartments and vesicles.

Cyclin proteins

Cell cycle regulatory proteins, the levels of which vary in a cyclical fashion to enable specific biochemical events to occur in different phases of the cell cycle.

Cyclin-dependent kinases

(CDKs). Protein kinases, the activity of which is strictly dependent upon association with a cyclin protein and is thus responsible for driving specific biochemical events in each phase of the cell cycle.

Aurora A

A mitotic serine/threonine protein kinase, the activity of which peaks during G2–M transition and is essential for spindle formation.

Aurora B

A mitotic serine/threonine protein kinase that complexes with members of the chromosome passenger complex and coordinates a number of events necessary for completion of cell division.

Polo-like kinase 1

(PLK1). A mitotic serine/threonine protein kinase that plays important roles in triggering M-phase entry, activation of the APC/C and later cytokinetic events.

Regulated proteolysis

The intentional destruction of proteins through ubiquitylation and proteasomal or lysosomal degradation.

Ubiquitin

A small 8.6 kDa protein that can be post-translationally attached to lysine residues on proteins of interest by E3 ubiquitin ligases, often resulting in its recognition by the proteasome for degradation.

Anaphase-promoting complex/cyclosome

(APC/C). A multiprotein E3 ubiquitin ligase that targets cell cycle proteins for proteasomal degradation.

Skp, cullin, F-box-containing complex

(SCF-containing complex). A multiprotein E3 ubiquitin ligase that targets cell cycle proteins for proteasomal degradation.

Cortex

An actin-rich layer immediately underneath the plasma membrane that plays important roles in cell shape control.

Membrane blebbing

The bulging of the cell membrane that protrudes into the extracellular environment when cortical connections are uncoupled.

G protein-coupled receptors

A receptor with seven transmembrane domains that can initiate intracellular signalling cascades in response to ligand binding.

Septin proteins

A group of filament-forming GTP-binding proteins that can function to recruit target proteins, scaffold complex assemblies or create diffusion barriers to restrict protein mobility.

Lipid modifications

Post-translational covalent attachment of a lipid group to specific residues within a protein, commonly to increase the affinity of the protein for membranes.

Nuclear pore complexes

(NPCs). A multi-subunit protein complex comprised of nucleoporin proteins that spans the nuclear envelope and allows regulated exchange of material between the nucleoplasm and cytoplasm.

Linker of nucleoskeleton and cytoskeleton complex

(LINC complex). A multi-subunit protein complex comprised of KASH and SUN domain proteins that spans the nuclear envelope and links the nuclear lamina to the cytoplasmic microtubule, actin and intermediate filament networks.

Morphometric proteins

A group of proteins that can shape organelles by inserting into, stabilizing or remodelling organellar membranes.

Dynamin

A GTPase involved in membrane fission reactions. Part of a larger superfamily of dynamin-like proteins.

Dynein

A microtubule-based molecular motor that travels towards the minus end of microtubules.

Nucleoporins

(NUPs). A family of proteins that help build the NPC.

Barrier-to-autointegration factor

(BAF). A small 10 kDa chromatin-binding protein that binds LEM domain-containing inner membrane proteins and participates in nuclear, and nuclear envelope, regeneration.

ESCRT-III

A membrane remodelling machinery that performs a topologically unique membrane fission activity called reverse topology membrane fission. See also Box 3.

Golgi reassembly and stacking proteins

(GRASPs). Myristoylated peripheral membrane proteins that localize to Golgi cisternae and trans-oligomerize to facilitate cisternal stacking.

C-terminal-binding protein 1/brefeldin A ADP-ribosylated substrate

(CtBP1/BARS). A dual function protein that regulates both transcriptional repression in the nucleus and membrane fission reactions in the cytoplasm.

SNARE

Membrane-embedded and soluble proteins that can oligomerize to mediate the fusion of vesicles with cellular membranes.

Sumoylated

A protein that has been post-translationally modified with a ubiquitin-like protein known as SUMO (small ubiquitin-related modifier). SUMO alters the protein’s function rather than targeting it for degradation.

Centromere protein F

(CENPF). A protein that associates with kinetochores in the G2 phase of the cell cycle and then localizes to the spindle midzone and midbody during cytokinesis.

Kinesin

Members of a family of microtubule-based molecular motors that typically travel towards the plus end of microtubules.

Clathrin

A lattice-like protein that forms a coat around vesicles during the endocytic budding process.

Exocyst

An octameric protein complex involved in tethering secretory vesicles to the plasma membrane.

Rab proteins

Members of the Ras superfamily of small GTPases that are specifically involved in membrane trafficking events.

Secondary ingression

A constriction generated in the midbody that specifies the site of cytokinetic abscission.

Autophagy

A catabolic process involving intentional sequestration of cytoplasm, organelles and/or foreign material and their targeting to the lysosome for proteolytic degradation and reutilization of cellular materials.

Centralspindlin complex

A protein complex involved in spindle assembly, microtubule bundling to form a midbody, cleavage furrow ingression, anchoring the midbody to the plasma membrane and recruitment of the ESCRT machinery to allow completion of cytokinesis.

Super-resolution

Forms of light microscopy that allow resolution to be achieved beyond the diffraction limit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlton, J.G., Jones, H. & Eggert, U.S. Membrane and organelle dynamics during cell division. Nat Rev Mol Cell Biol 21, 151–166 (2020). https://doi.org/10.1038/s41580-019-0208-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-019-0208-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing