Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in predictive in vitro models of drug-induced nephrotoxicity

Abstract

In vitro screens for nephrotoxicity are currently poorly predictive of toxicity in humans. Although the functional proteins that are expressed by nephron tubules and mediate drug susceptibility are well known, current in vitro cellular models poorly replicate both the morphology and the function of kidney tubules and therefore fail to demonstrate injury responses to drugs that would be nephrotoxic in vivo. Advances in protocols to enable the directed differentiation of pluripotent stem cells into multiple renal cell types and the development of microfluidic and 3D culture systems have opened a range of potential new platforms for evaluating drug nephrotoxicity. Many of the new in vitro culture systems have been characterized by the expression and function of transporters, enzymes, and other functional proteins that are expressed by the kidney and have been implicated in drug-induced renal injury. In vitro platforms that express these proteins and exhibit molecular biomarkers that have been used as readouts of injury demonstrate improved functional maturity compared with static 2D cultures and represent an opportunity to model injury to renal cell types that have hitherto received little attention. As nephrotoxicity screening platforms become more physiologically relevant, they will facilitate the development of safer drugs and improved clinical management of nephrotoxicants.

Key points

  • Currently available in vitro and animal models of drug-induced nephrotoxicity are poorly predictive of toxicity in humans.

  • Functional proteins that underlie the susceptibility of various renal cell types to specific drugs, and molecular biomarkers of injury, can be used to characterize the functional maturity of in vitro models and their capacity to respond to nephrotoxicants.

  • In vitro models derived using new protocols for the directed differentiation of pluripotent stem cells to renal cells and new 3D in vitro culture systems demonstrate improved functional maturity over static 2D systems.

  • Improved functional maturity of cultured renal cells in systems that more closely replicate the physiology of the renal tubule and its supporting cells will improve the predictive ability of in vitro models of nephrotoxicity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Renal transporters and targets of nephrotoxicants.
Fig. 2: Novel culture platforms for modelling nephrotoxicity in vitro.

Similar content being viewed by others

References

  1. Nolin, T. D. & Himmelfarb, J. in Adverse Drug Reactions (ed. Uetrecht, J.) 111–130 (Springer, Berlin, Heidelberg, 2010).

    Chapter  Google Scholar 

  2. Grünfeld, J.-P. & Rossier, B. C. Lithium nephrotoxicity revisited. Nat. Rev. Nephrol. 5, 270–276 (2009).

    Article  PubMed  CAS  Google Scholar 

  3. Rewa, O. & Bagshaw, S. M. Acute kidney injury — epidemiology, outcomes and economics. Nat. Rev. Nephrol. 10, 193–207 (2014).

    Article  PubMed  CAS  Google Scholar 

  4. Magee, T. V. et al. Discovery of Dap-3 polymyxin analogues for the treatment of multidrug-resistant Gram-negative nosocomial infections. J. Med. Chem. 56, 5079–5093 (2013).

    Article  PubMed  CAS  Google Scholar 

  5. Tiong, H. Y. et al. Drug-induced nephrotoxicity: clinical impact and preclinical in vitro models. Mol. Pharm 11, 1933–1948 (2014).

    Article  PubMed  CAS  Google Scholar 

  6. Huang, J. X. et al. Evaluation of biomarkers for in vitro prediction of drug-induced nephrotoxicity: comparison of HK-2, immortalized human proximal tubule epithelial, and primary cultures of human proximal tubular cells. Pharmacol. Res. Perspect. 3, e00148 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Dekant, W. & Vamvakas, S. Biotransformation and membrane transport in nephrotoxicity. Crit. Rev. Toxicol. 26, 309–334 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. Hawksworth, G. M. et al. in Toxicology — From Cells to Man (eds Seiler, S. P., Kroftová, O. & Eybl, V.) 184–192 (Springer, Berlin, Heidelberg, 1996).

  9. Lock, E. A. & Reed, C. J. Xenobiotic metabolizing enzymes of the kidney. Toxicol. Pathol. 26, 18–25 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. Knops, N. et al. The functional implications of common genetic variation in CYP3A5 and ABCB1 in human proximal tubule cells. Mol. Pharm. 12, 758–768 (2015).

    Article  PubMed  CAS  Google Scholar 

  11. Bhargava, P. & Schnellmann, R. G. Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 13, 629–646 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Kramann, R., Tanaka, M. & Humphreys, B. D. Fluorescence microangiography for quantitative assessment of peritubular capillary changes after AKI in mice. J. Am. Soc. Nephrol. 25, 1924–1931 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Qi, W., Johnson, D. W., Vesey, D. A., Pollock, C. A. & Chen, X. Isolation, propagation and characterization of primary tubule cell culture from human kidney (Methods in Renal Research). Nephrology 12, 155–159 (2007).

    Article  PubMed  Google Scholar 

  14. Fisel, P., Renner, O., Nies, A. T., Schwab, M. & Schaeffeler, E. Solute carrier transporter and drug-related nephrotoxicity: the impact of proximal tubule cell models for preclinical research. Expert Opin. Drug Metab. Toxicol. 10, 395–408 (2014).

    Article  PubMed  CAS  Google Scholar 

  15. Lemke, A., Kiderlen, A. F. & Kayser, O. Amphotericin, B. Appl. Microbiol. Biotechnol. 68, 151–162 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. Mamoulakis, C. et al. Contrast-induced nephropathy: Basic concepts, pathophysiological implications and prevention strategies. Pharmacol. Ther. 180, 99–112 (2017).

    Article  PubMed  CAS  Google Scholar 

  17. Paueksakon, P. & Fogo, A. B. Drug-induced nephropathies. Histopathology 70, 94–108 (2017).

    Article  PubMed  Google Scholar 

  18. Perazella, M. A. & Markowitz, G. S. Bisphosphonate nephrotoxicity. Kidney Int. 74, 1385–1393 (2008).

    Article  PubMed  CAS  Google Scholar 

  19. Xia, L., Zhou, M., Kalhorn, T. F., Ho, H. T. B. & Wang, J. Podocyte-specific expression of organic cation transporter PMAT: implication in puromycin aminonucleoside nephrotoxicity. Am. J. Physiol.-Ren. Physiol. 296, F1307–F1313 (2009).

    Article  CAS  Google Scholar 

  20. Yilmaz, M., Taninmis, H., Kara, E., Ozagari, A. & Unsal, A. Nephrotic syndrome after oral bisphosphonate (alendronate) administration in a patient with osteoporosis. Osteoporos. Int. 23, 2059–2062 (2012).

    Article  PubMed  CAS  Google Scholar 

  21. Cheng, H. F. & Harris, R. C. Renal effects of non-steroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors. Curr. Pharm. Des. 11, 1795–1804 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. Perazella, M. A. Drug-induced renal failure: update on new medications and unique mechanisms of nephrotoxicity. Am. J. Med. Sci. 325, 349–362 (2003).

    Article  PubMed  Google Scholar 

  23. Basile, D. P., Donohoe, D., Roethe, K. & Osborn, J. L. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am. J. Physiol. Renal Physiol. 281, F887–F899 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. Verma, S. K. & Molitoris, B. A. Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin. Nephrol. 35, 96–107 (2015).

    Article  PubMed  CAS  Google Scholar 

  25. Dimke, H. et al. Tubulovascular cross-talk by vascular endothelial growth factor a maintains peritubular microvasculature in kidney. J. Am. Soc. Nephrol. 26, 1027–1038 (2015).

    Article  PubMed  CAS  Google Scholar 

  26. Lameire, N. Nephrotoxicity of recent anti-cancer agents. Clin. Kidney J. 7, 11–22 (2014).

    Article  PubMed  CAS  Google Scholar 

  27. Al-Nouri, Z. L., Reese, J. A., Terrell, D. R., Vesely, S. K. & George, J. N. Drug-induced thrombotic microangiopathy: a systematic review of published reports. Blood 125, 616–618 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Breljak, D. et al. Distribution of organic anion transporters NaDC3 and OAT1-3 along the human nephron. Am. J. Physiol. Renal Physiol. 311, F227–F238 (2016).

    Article  PubMed  CAS  Google Scholar 

  29. Motohashi, H. et al. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J. Am. Soc. Nephrol. 13, 866–874 (2002).

    PubMed  CAS  Google Scholar 

  30. Ingraham, L. et al. A plasma concentration of α-ketoglutarate influences the kinetic interaction of ligands with organic anion transporter 1. Mol. Pharmacol. 86, 86–95 (2014).

    Article  PubMed  CAS  Google Scholar 

  31. Budiman, T., Bamberg, E., Koepsell, H. & Nagel, G. Mechanism of electrogenic cation transport by the cloned organic cation transporter 2 from rat. J. Biol. Chem. 275, 29413–29420 (2000).

    Article  PubMed  CAS  Google Scholar 

  32. Cihlar, T. et al. The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol. Pharmacol. 56, 570–580 (1999).

    Article  PubMed  CAS  Google Scholar 

  33. Ho, E. S., Lin, D. C., Mendel, D. B. & Cihlar, T. Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J. Am. Soc. Nephrol. 11, 383–393 (2000).

    PubMed  CAS  Google Scholar 

  34. Nieskens, T. T. G. et al. A human renal proximal tubule cell line with stable organic anion transporter 1 and 3 expression predictive for antiviral-induced toxicity. AAPS J. 18, 465–475 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hagos, Y. & Wolff, N. A. Assessment of the role of renal organic anion transporters in drug-induced nephrotoxicity. Toxins 2, 2055–2082 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ciarimboli, G. Role of organic cation transporters in drug-induced toxicity. Expert Opin. Drug Metab. Toxicol. 7, 159–174 (2011).

    Article  PubMed  Google Scholar 

  37. Pabla, N., Murphy, R. F., Liu, K. & Dong, Z. The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am. J. Physiol. Renal Physiol. 296, F505–F511 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hori, Y. et al. Megalin blockade with cilastatin suppresses drug-induced nephrotoxicity. J. Am. Soc. Nephrol. 28, 1783–1791 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nagai, J. & Takano, M. Entry of aminoglycosides into renal tubular epithelial cells via endocytosis-dependent and endocytosis-independent pathways. Biochem. Pharmacol. 90, 331–337 (2014).

    Article  PubMed  CAS  Google Scholar 

  40. [No authors listed.] Genitourinary Development Molecular Anatomy Project. GUDMAP http://www.gudmap.org/ (2017).

  41. Harding, S. D. et al. The GUDMAP database — an online resource for genitourinary research. Development 138, 2845–2853 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Jenkinson, S. E. et al. The limitations of renal epithelial cell line HK-2 as a model of drug transporter expression and function in the proximal tubule. Pflüg. Arch. 464, 601–611 (2012).

    Article  CAS  Google Scholar 

  43. van Aubel, R. A., Smeets, P. H., Peters, J. G., Bindels, R. J. & Russel, F. G. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J. Am. Soc. Nephrol. 13, 595–603 (2002).

    PubMed  Google Scholar 

  44. Huls, M. et al. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int. 73, 220–225 (2008).

    Article  PubMed  CAS  Google Scholar 

  45. Motohashi, H. & Inui, K. Multidrug and toxin extrusion family SLC47: Physiological, pharmacokinetic and toxicokinetic importance of MATE1 and MATE2-K. Mol. Aspects Med. 34, 661–668 (2013).

    Article  PubMed  CAS  Google Scholar 

  46. Wen, X. et al. MDR1 transporter protects against paraquat-induced toxicity in human and mouse proximal tubule cells. Toxicol. Sci. 141, 475–483 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Yokoo, S. et al. Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent-induced nephrotoxicity. Biochem. Pharmacol. 74, 477–487 (2007).

    Article  PubMed  CAS  Google Scholar 

  48. Hahn, K., Ejaz, A. A., Kanbay, M., Lanaspa, M. A. & Johnson, R. J. Acute kidney injury from SGLT2 inhibitors: potential mechanisms. Nat. Rev. Nephrol. 12, 711–712 (2016).

    Article  PubMed  CAS  Google Scholar 

  49. Nadkarni, G. N. et al. Acute kidney injury in patients on SGLT2 inhibitors: a propensity-matched analysis. Diabetes Care 40, 1479–1485 (2017).

    Article  PubMed  Google Scholar 

  50. Saly, D. & Perazella, M. A. Harnessing basic and clinic tools to evaluate SGLT2 inhibitor nephrotoxicity. Am. J. Physiol. Renal Physiol. 313, F951–F954 (2017).

    Article  PubMed  Google Scholar 

  51. Yu, A. S. L. Claudins and the kidney. J. Am. Soc. Nephrol. 26, 11–19 (2015).

    Article  PubMed  CAS  Google Scholar 

  52. Markadieu, N. et al. A primary culture of distal convoluted tubules expressing functional thiazide-sensitive NaCl transport. Am. J. Physiol. Renal Physiol. 303, F886–F892 (2012).

    Article  PubMed  CAS  Google Scholar 

  53. Fromm, M., Piontek, J., Rosenthal, R., Günzel, D. & Krug, S. M. Tight junctions of the proximal tubule and their channel proteins. Pflüg. Arch. 469, 877–887 (2017).

    Article  CAS  Google Scholar 

  54. Günzel, D. & Yu, A. S. L. Claudins and the modulation of tight junction permeability. Physiol. Rev. 93, 525–569 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Trujillo, J. et al. Renal tight junction proteins are decreased in cisplatin-induced nephrotoxicity in rats. Toxicol. Mech. Methods 24, 520–528 (2014).

    Article  PubMed  CAS  Google Scholar 

  56. Balkovetz, D. F. Tight junction claudins and the kidney in sickness and in health. Biochim. Biophys. Acta 1788, 858–863 (2009).

    Article  PubMed  CAS  Google Scholar 

  57. Lash, L. H., Putt, D. A. & Cai, H. Drug metabolism enzyme expression and activity in primary cultures of human proximal tubular cells. Toxicology 244, 56–65 (2008).

    Article  PubMed  CAS  Google Scholar 

  58. Miners, J., Yang, X., Knights, K. & Zhang, L. The role of the kidney in drug elimination: transport, metabolism, and the impact of kidney disease on drug clearance. Clin. Pharmacol. Ther. 102, 436–449 (2017).

    Article  PubMed  CAS  Google Scholar 

  59. Bolbrinker, J. et al. CYP3A5 genotype-phenotype analysis in the human kidney reveals a strong site-specific expression of CYP3A5 in the proximal tubule in carriers of the CYP3A5*1 allele. Drug Metab. Dispos. 40, 639–641 (2012).

    Article  PubMed  CAS  Google Scholar 

  60. Yu, J., Zhou, Z., Owens, K. H., Ritchie, T. K. & Ragueneau-Majlessi, I. What can be learned from recent new drug applications? A systematic review of drug interaction data for drugs approved by the US FDA in 2015. Drug Metab. Dispos. 45, 86–108 (2017).

    Article  PubMed  CAS  Google Scholar 

  61. Dekant, W. The role of biotransformation and bioactivation in toxicity. EXS 99, 57–86 (2009).

    PubMed  CAS  Google Scholar 

  62. Liu, S. et al. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models. Toxicol. Appl. Pharmacol. 272, 230–237 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Fliedl, L. Controversial role of gamma-glutamyl transferase activity in cisplatin nephrotoxicity. ALTEX 31, 269–278 (2014).

    Article  PubMed  Google Scholar 

  64. Meister, A., Tate, S. S. & Griffith, O. W. Gamma-glutamyl transpeptidase. Methods Enzymol. 77, 237–253 (1981).

    Article  PubMed  CAS  Google Scholar 

  65. King, S. M. et al. 3D proximal tubule tissues recapitulate key aspects of renal physiology to enable nephrotoxicity testing. Front. Physiol. 8, 123 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wieser, M. et al. hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics. Am. J. Physiol. Renal Physiol. 295, F1365–F1375 (2008).

    Article  PubMed  CAS  Google Scholar 

  67. Weber, E. J. et al. Development of a microphysiological model of human kidney proximal tubule function. Kidney Int. 90, 627–637 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kortenoeven, M. L. A. et al. Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney Int. 76, 44–53 (2009).

    Article  PubMed  CAS  Google Scholar 

  69. Thomsen, K. & Shirley, D. G. A hypothesis linking sodium and lithium reabsorption in the distal nephron. Nephrol. Dial. Transplant. 21, 869–880 (2006).

    Article  PubMed  CAS  Google Scholar 

  70. Christensen, B. M., Kim, Y.-H., Kwon, T.-H. & Nielsen, S. Lithium treatment induces a marked proliferation of primarily principal cells in rat kidney inner medullary collecting duct. Am. J. Physiol. Renal Physiol. 291, F39–F48 (2006).

    Article  PubMed  CAS  Google Scholar 

  71. Ledeganck, K. J. et al. Expression of renal distal tubule transporters TRPM6 and NCC in a rat model of cyclosporine nephrotoxicity and effect of EGF treatment. Am. J. Physiol. Renal Physiol. 301, F486–F493 (2011).

    Article  PubMed  CAS  Google Scholar 

  72. Bonventre, J. V., Vaidya, V. S., Schmouder, R., Feig, P. & Dieterle, F. Next-generation biomarkers for detecting kidney toxicity. Nat. Biotechnol. 28, 436–440 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Bailly, V. et al. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J. Biol. Chem. 277, 39739–39748 (2002).

    Article  PubMed  CAS  Google Scholar 

  74. Ichimura, T. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am. J. Physiol. Renal Physiol. 286, 552F–563 (2004).

    Article  Google Scholar 

  75. Ichimura, T. et al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J. Clin. Invest. 118, 1657–1668 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Vaidya, V. S. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am. J. Physiol. Renal Physiol. 290, F517–F529 (2006).

    Article  PubMed  CAS  Google Scholar 

  77. Vaidya, V. S. et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat. Biotechnol. 28, 478–485 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Vaidya, V. S. et al. Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin. Transl Sci. 1, 200–208 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Dieterle, F. et al. Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nat. Biotechnol. 28, 455–462 (2010).

    Article  PubMed  CAS  Google Scholar 

  80. Rached, E. et al. Evaluation of putative biomarkers of nephrotoxicity after exposure to ochratoxin A in vivo and in vitro. Toxicol. Sci 103, 371–381 (2008).

    Article  PubMed  CAS  Google Scholar 

  81. Sohn, S.-J. et al. In vitro evaluation of biomarkers for cisplatin-induced nephrotoxicity using HK-2 human kidney epithelial cells. Toxicol. Lett. 217, 235–242 (2013).

    Article  PubMed  CAS  Google Scholar 

  82. Li, Y. et al. An in vitro method for the prediction of renal proximal tubular toxicity in humans. Toxicol. Res 2, 352 (2013).

    Article  CAS  Google Scholar 

  83. Luo, Q.-H. et al. Evaluation of KIM-1 and NGAL as early indicators for assessment of gentamycin-induced nephrotoxicity in vivo and in vitro. Kidney Blood Press. Res 41, 911–918 (2016).

    Article  PubMed  CAS  Google Scholar 

  84. Gozzelino, R., Jeney, V. & Soares, M. P. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 50, 323–354 (2010).

    Article  PubMed  CAS  Google Scholar 

  85. Lever, J. M., Boddu, R., George, J. F. & Agarwal, A. Heme oxygenase-1 in kidney health and disease. Antioxid. Redox Signal. https://doi.org/10.1089/ars.2016.6659 (2016).

  86. Zager, R. A., Johnson, A. C. M. & Becker, K. Plasma and urinary heme oxygenase-1 in AKI. J. Am. Soc. Nephrol. 23, 1048–1057 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Adler, M. et al. A quantitative approach to screen for nephrotoxic compounds in vitro. J. Am. Soc. Nephrol. 27, 1015–1028 (2016).

    Article  PubMed  CAS  Google Scholar 

  88. Akdis, M. et al. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 127, 701–721.e70 (2011).

    Article  PubMed  CAS  Google Scholar 

  89. Tramma, D., Hatzistylianou, M., Gerasimou, G. & Lafazanis, V. Interleukin-6 and interleukin-8 levels in the urine of children with renal scarring. Pediatr. Nephrol. 27, 1525–1530 (2012).

    Article  PubMed  Google Scholar 

  90. Grigoryev, D. N. et al. The local and systemic inflammatory transcriptome after acute kidney injury. J. Am. Soc. Nephrol. 19, 547–558 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Araki, M. et al. Expression of IL-8 during reperfusion of renal allografts is dependent on ischemic time. Transplantation 81, 783–788 (2006).

    Article  PubMed  CAS  Google Scholar 

  92. Su, H., Lei, C.-T. & Zhang, C. Interleukin-6 signaling pathway and its role in kidney disease: an update. Front. Immunol. 8, 405 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Mihajlovic, M. et al. Allostimulatory capacity of conditionally immortalized proximal tubule cell lines for bioartificial kidney application. Sci. Rep. 7, 7103 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Cowland, J. B. & Borregaard, N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics 45, 17–23 (1997).

    Article  PubMed  CAS  Google Scholar 

  95. Charlton, J. R., Portilla, D. & Okusa, M. D. A basic science view of acute kidney injury biomarkers. Nephrol. Dial. Transplant. 29, 1301–1311 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Paragas, N. et al. The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat. Med. 17, 216–222 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. McIlroy, D. R., Wagener, G. & Lee, H. T. Neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery: the effect of baseline renal function on diagnostic performance. Clin. J. Am. Soc. Nephrol. 5, 211–219 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Mårtensson, J. & Bellomo, R. The rise and fall of NGAL in acute kidney injury. Blood Purif. 37, 304–310 (2014).

    Article  PubMed  CAS  Google Scholar 

  99. Haase, M. et al. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am. J. Kidney Dis. 54, 1012–1024 (2009).

    Article  PubMed  CAS  Google Scholar 

  100. Scotcher, D., Jones, C., Posada, M., Galetin, A. & Rostami-Hodjegan, A. Key to opening kidney for in vitro-in vivo extrapolation entrance in health and disease: Part II: mechanistic models and in vitro-in vivo extrapolation. AAPS J. 18, 1082–1094 (2016).

    Article  PubMed  CAS  Google Scholar 

  101. Hilgendorf, C. et al. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab. Dispos. 35, 1333–1340 (2007).

    Article  PubMed  CAS  Google Scholar 

  102. Chu, X., Bleasby, K. & Evers, R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin. Drug Metab. Toxicol. 9, 237–252 (2013).

    Article  PubMed  CAS  Google Scholar 

  103. Yonezawa, A. & Inui, K. Importance of the multidrug and toxin extrusion MATE/SLC47A family to pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics. Br. J. Pharmacol. 164, 1817–1825 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Aoki, M. et al. Kidney-specific expression of human organic cation transporter 2 (OCT2/SLC22A2) is regulated by DNA methylation. Am. J. Physiol. Renal Physiol. 295, F165–F170 (2008).

    Article  PubMed  CAS  Google Scholar 

  105. Tanaka, Y., Slitt, A. L., Leazer, T. M., Maher, J. M. & Klaassen, C. D. Tissue distribution and hormonal regulation of the breast cancer resistance protein (Bcrp/Abcg2) in rats and mice. Biochem. Biophys. Res. Commun. 326, 181–187 (2004).

    Article  CAS  Google Scholar 

  106. Soldin, O. P. & Mattison, D. R. Sex differences in pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 48, 143–157 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Joseph, S. et al. Expression of drug transporters in human kidney: impact of sex, age, and ethnicity. Biol. Sex Differ. 6, 4 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Veiras, L. C. et al. Sexual dimorphic pattern of renal transporters and electrolyte homeostasis. J. Am. Soc. Nephrol. 28, 3504–3517 (2017).

    Article  PubMed  Google Scholar 

  109. [No authors listed.] Validating human stem cell cardiomyocyte technology for better predictive assessment of drug-induced cardiac toxicity. U.S. Food & Drug Administration https://www.fda.gov/ScienceResearch/SpecialTopics/RegulatoryScience/ucm507998.htm (2016).

  110. Wilmer, M. J. et al. Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol. 34, 156–170 (2016).

    Article  PubMed  CAS  Google Scholar 

  111. Ryan, M. J. et al. HK-2: An immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int. 45, 48–57 (1994).

    Article  PubMed  CAS  Google Scholar 

  112. Wilmer, M. J. et al. Novel conditionally immortalized human proximal tubule cell line expressing functional influx and efflux transporters. Cell Tissue Res. 339, 449–457 (2010).

    Article  PubMed  Google Scholar 

  113. Aschauer, L., Carta, G., Vogelsang, N., Schlatter, E. & Jennings, P. Expression of xenobiotic transporters in the human renal proximal tubule cell line RPTEC/TERT1. Toxicol. In Vitro 30, 95–105 (2015).

    Article  PubMed  CAS  Google Scholar 

  114. Schophuizen, C. M. S. et al. Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter. Pflüg. Arch. 465, 1701–1714 (2013).

    Article  CAS  Google Scholar 

  115. Mutsaers, H. A. M. et al. Uremic toxins inhibit renal metabolic capacity through interference with glucuronidation and mitochondrial respiration. Biochim. Biophys. Acta 1832, 142–150 (2013).

    Google Scholar 

  116. Jansen, J. et al. Bioengineered kidney tubules efficiently excrete uremic toxins. Sci. Rep. 6, 26715 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Ivliev, A. E., ’t Hoen, P. A. C., Roon-Mom, W. M. C., van, Peters, D. J. M. & Sergeeva, M. G. Exploring the transcriptome of ciliated cells using in silico dissection of human tissues. PLoS ONE 7, e35618 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Ohnuki, M. & Takahashi, K. Present and future challenges of induced pluripotent stem cells. Phil. Trans. R. Soc. B Biol Sci. 370, 20140367 (2015).

    Article  CAS  Google Scholar 

  119. Lam, A. Q. et al. Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J. Am. Soc. Nephrol. 25, 1211–1225 (2014).

    Article  PubMed  CAS  Google Scholar 

  120. Mae, S.-I. et al. Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat. Commun. 4, 1367 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Xia, Y. et al. The generation of kidney organoids by differentiation of human pluripotent cells to ureteric bud progenitor-like cells. Nat. Protoc. 9, 2693–2704 (2014).

    Article  PubMed  Google Scholar 

  122. Taguchi, A. et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14, 53–67 (2014).

    Article  PubMed  CAS  Google Scholar 

  123. Freedman, B. S. et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat. Commun. 6, 8715 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    Article  PubMed  CAS  Google Scholar 

  125. Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193–1200 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Kandasamy, K. et al. Prediction of drug-induced nephrotoxicity and injury mechanisms with human induced pluripotent stem cell-derived cells and machine learning methods. Sci. Rep. 5, 12337 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Imberti, B. et al. Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Sci. Rep. 5, 8826 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Musah, S. et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 1, 0069 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Song, B. et al. The directed differentiation of human iPS cells into kidney podocytes. PLoS ONE 7, e46453 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Kaminski, M. M. et al. Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. Nat. Cell Biol. 18, 1269–1280 (2016).

    Article  PubMed  CAS  Google Scholar 

  131. Xu, J., Du, Y. & Deng, H. Direct lineage reprogramming: strategies, mechanisms, and applications. Cell Stem Cell 16, 119–134 (2015).

    Article  PubMed  CAS  Google Scholar 

  132. Takasato, M. et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat. Cell Biol. 16, 118–126 (2014).

    Article  PubMed  CAS  Google Scholar 

  133. Jang, K.-J. et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 5, 1119 (2013).

    Article  CAS  Google Scholar 

  134. Homan, K. A. et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci. Rep. 6, 34845 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Tourovskaia, A., Fauver, M., Kramer, G., Simonson, S. & Neumann, T. Tissue-engineered microenvironment systems for modeling human vasculature. Exp. Biol. Med. 239, 1264–1271 (2014).

    Article  CAS  Google Scholar 

  136. Masereeuw, R. et al. Probenecid interferes with renal oxidative metabolism: a potential pitfall in its use as an inhibitor of drug transport. Br. J. Pharmacol. 131, 57–62 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Tsai, M. et al. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. J. Clin. Invest. 122, 408–418 (2012).

    Article  PubMed  CAS  Google Scholar 

  138. Ligresti, G. et al. A novel three-dimensional human peritubular microvascular system. J. Am. Soc. Nephrol. 27, 2370–2381 (2016).

    Article  PubMed  CAS  Google Scholar 

  139. Kelly, E. J. et al. Innovations in preclinical biology: ex vivo engineering of a human kidney tissue microperfusion system. Stem Cell Res. Ther. 4, S17 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Phan, D. T. T. et al. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab Chip 17, 511–520 (2017).

    Article  PubMed  CAS  Google Scholar 

  141. van Duinen, V. et al. 96 perfusable blood vessels to study vascular permeability in vitro. Sci. Rep. 7, 18071 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Vernetti, L. et al. Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. Sci. Rep. 7, 42296 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Chang, S.-Y. et al. Human liver-kidney model elucidates the mechanisms of aristolochic acid nephrotoxicity. JCI Insight 2, 95978 (2017).

    Article  PubMed  Google Scholar 

  144. Jansen, J. et al. Human proximal tubule epithelial cells cultured on hollow fibers: living membranes that actively transport organic cations. Sci. Rep. 5, 16702 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Mihajlovic, M. et al. Role of vitamin D in maintaining renal epithelial barrier function in uremic conditions. Int. J. Mol. Sci. 18, 2531 (2017).

    Article  PubMed Central  Google Scholar 

  146. Nguyen, D. G. et al. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS ONE 11, e0158674 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Persson, M. & Hornberg, J. J. Advances in predictive toxicology for discovery safety through high content screening. Chem. Res. Toxicol. 29, 1998–2007 (2016).

    Article  PubMed  CAS  Google Scholar 

  148. Su, R., Xiong, S., Zink, D. & Loo, L.-H. High-throughput imaging-based nephrotoxicity prediction for xenobiotics with diverse chemical structures. Arch. Toxicol. 90, 2793–2808 (2016).

    Article  PubMed  CAS  Google Scholar 

  149. Abdullah, R., Alhusainy, W., Woutersen, J., Rietjens, I. M. C. M. & Punt, A. Predicting points of departure for risk assessment based on in vitro cytotoxicity data and physiologically based kinetic (PBK) modeling: The case of kidney toxicity induced by aristolochic acid I. Food Chem. Toxicol. 92, 104–116 (2016).

    Article  PubMed  CAS  Google Scholar 

  150. Zhou, S.-F., Liu, J.-P. & Chowbay, B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab. Rev. 41, 89–295 (2009).

    Article  PubMed  CAS  Google Scholar 

  151. Scotcher, D. et al. Microsomal and cytosolic scaling factors in dog and human kidney cortex and application for in vitro-in vivo extrapolation of renal metabolic clearance. Drug Metab. Dispos. 45, 556–568 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Leclerc, E., Hamon, J. & Bois, F. Y. Investigation of ifosfamide and chloroacetaldehyde renal toxicity through integration of in vitro liver–kidney microfluidic data and pharmacokinetic-system biology models. J. Appl. Toxicol. 36, 330–339 (2016).

    Article  PubMed  CAS  Google Scholar 

  153. Miller, R. P., Tadagavadi, R. K., Ramesh, G. & Reeves, W. B. Mechanisms of cisplatin nephrotoxicity. Toxins 2, 2490–2518 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Nakamura, T., Yonezawa, A., Hashimoto, S., Katsura, T. & Inui, K. Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity. Biochem. Pharmacol. 80, 1762–1767 (2010).

    Article  PubMed  CAS  Google Scholar 

  155. Hu, S. et al. Identification of OAT1/OAT3 as contributors to cisplatin toxicity. Clin. Transl Sci. 10, 412–420 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Sonneveld, R. et al. Glucose specifically regulates TRPC6 expression in the podocyte in an AngII-dependent manner. Am. J. Pathol. 184, 1715–1726 (2014).

    Article  PubMed  CAS  Google Scholar 

  157. Ambrus, L. et al. Inhibition of TRPC6 by protein kinase C isoforms in cultured human podocytes. J. Cell. Mol. Med. 19, 2771–2779 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Eyre, J. et al. Statin-sensitive endocytosis of albumin by glomerular podocytes. Am. J. Physiol. Renal Physiol. 292, F674–F681 (2007).

    Article  PubMed  CAS  Google Scholar 

  159. Kido, Y., Matsson, P. & Giacomini, K. M. Profiling of a prescription drug library for potential renal drug–drug interactions mediated by the organic cation transporter 2. J. Med. Chem. 54, 4548–4558 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Caetano-Pinto, P. et al. Fluorescence-based transport assays revisited in a human renal proximal tubule cell line. Mol. Pharm. 13, 933–944 (2016).

    Article  PubMed  CAS  Google Scholar 

  161. Shaik, N., Giri, N., Pan, G. & Elmquist, W. F. P-Glycoprotein-mediated active efflux of the anti-HIV1 nucleoside abacavir limits cellular accumulation and brain distribution. Drug Metab. Dispos. 35, 2076–2085 (2007).

    Article  PubMed  CAS  Google Scholar 

  162. Kusuhara, H. et al. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin. Pharmacol. Ther. 89, 837–844 (2011).

    Article  PubMed  CAS  Google Scholar 

  163. Ito, S. et al. Potent and specific inhibition of mMate1-mediated efflux of type I organic cations in the liver and kidney by pyrimethamine. J. Pharmacol. Exp. Ther. 333, 341–350 (2010).

    Article  PubMed  CAS  Google Scholar 

  164. Zhai, X. Y. et al. Cubilin- and megalin-mediated uptake of albumin in cultured proximal tubule cells of opossum kidney. Kidney Int. 58, 1523–1533 (2000).

    Article  PubMed  CAS  Google Scholar 

  165. Moreno, E. et al. Affinity-defining domains in the Na-Cl cotransporter: a different location for Cl and thiazide binding. J. Biol. Chem. 281, 17266–17275 (2006).

    Article  PubMed  CAS  Google Scholar 

  166. Andrukhova, O. et al. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J. 33, 229–246 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  167. Masereeuw, R., Moons, M. M., Toomey, B. H., Russel, F. G. M. & Miller, D. S. Active lucifer yellow secretion in renal proximal tubule: evidence for organic anion transport system crossover. J. Pharmacol. Exp. Ther. 289, 1104–1111 (1999).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

J.Y.-C.S. is supported by a University of Melbourne Research Scholarship and a Murdoch Children’s Research Institute Top up scholarship. J.J. is supported by the Dutch Kidney Foundation (Kolff postdoctoral fellowship abroad grant 170KK05), EMBO (short-term fellowship 6893), and by the partners of Regenerative Medicine Crossing Borders powered by Health~Holland, Top Sector Life Sciences & Health. R.M. is supported by a grant from the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), the NephroTube CRACK IT Challenge, and the RegMed XB consortium. M.H.L. is an Australian National Health and Medical Research Council (NHMRC) Senior Principal Research Fellow (GNT1042093) and is supported by funding from the NHMRC (GNT1100970) and the US National Institutes of Health (DK107344).

Reviewer information

Nature Reviews Nephrology thanks J. Lewis, R. Morizane and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

J.J. researched data for the article. J.Y.-C.S., J.J., and R.M. wrote the article. All authors contributed substantially to discussion of the article’s content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Melissa H. Little.

Ethics declarations

Competing interests

M.H.L. holds a research contract with Organovo, Inc. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

GUDMAP: www.gudmap.org

Regenerative Medicine Crossing Borders: www.regmedxb.com

Glossary

Nephrotoxicants

Any compounds, natural and synthetic, that exert an adverse effect on a specific kidney cell type or mediate an unwanted event affecting kidney functioning. By contrast, a toxin is a poisonous substance produced within living cells or organisms.

Electrogenic transport

Transport that leads to a change in net charge across a cell membrane.

Transepithelial electrical resistance

(TEER). The electrical resistance across a cell monolayer. The higher the value, the less permeable the monolayer.

Kidney-on-a-chip

Renal cells seeded in a 2D or 3D configuration in a microfluidic device. For proximal tubule chips, these devices typically allow flow of media across the cells’ apical surface, basolateral surface, or both. Other cell types such as endothelial cells might be included; in these cases, the organization of the different cell types is defined by the design of the chip.

Kidney organoids

Three-dimensional aggregates of interstitial cells and nephron structures with characteristic segments, typically formed by directing pluripotent stem cells to a renal fate and aggregating these cells to enable self-organization, with or without additional extracellular matrix.

Renal tissue arrays

Three-dimensional co-cultures of renal epithelial cells, renal fibroblasts, and endothelial cells. Cell suspensions are prepared in biocompatible gels and bioprinted. The composition of the suspensions and the spatial arrangement of the different suspensions used define the organization of the different cell types. Scaffolds composed of extracellular matrix may or may not be used.

Fugitive ink

Biocompatible material that can be printed and later evacuated to leave a hollow space within a mould.

Biofunctionalized hollow fibres

Hollow, porous polymer fibres coated with extracellular matrix on which renal cells can be cultured.

Desquamated

Peeling and shedding of the top layer of an epithelium.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soo, J.YC., Jansen, J., Masereeuw, R. et al. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat Rev Nephrol 14, 378–393 (2018). https://doi.org/10.1038/s41581-018-0003-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-018-0003-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research