Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ageing as a risk factor for neurodegenerative disease

Abstract

Ageing is the primary risk factor for most neurodegenerative diseases, including Alzheimer disease (AD) and Parkinson disease (PD). One in ten individuals aged ≥65 years has AD and its prevalence continues to increase with increasing age. Few or no effective treatments are available for ageing-related neurodegenerative diseases, which tend to progress in an irreversible manner and are associated with large socioeconomic and personal costs. This Review discusses the pathogenesis of AD, PD and other neurodegenerative diseases, and describes their associations with the nine biological hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, cellular senescence, deregulated nutrient sensing, stem cell exhaustion and altered intercellular communication. The central biological mechanisms of ageing and their potential as targets of novel therapies for neurodegenerative diseases are also discussed, with potential therapies including NAD+ precursors, mitophagy inducers and inhibitors of cellular senescence.

Key points

  • Ageing is the main risk factor for most neurodegenerative diseases, including Alzheimer disease (AD) and Parkinson disease (PD).

  • Tissues composed primarily of postmitotic cells, such as the brain, are especially sensitive to the effects of ageing.

  • Hallmarks of ageing — genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, cellular senescence, deregulated nutrient sensing, stem cell exhaustion and altered intercellular communication — correlate with susceptibility to neurodegenerative disease.

  • NAD+ deficiency is a key biomarker for mitochondrial dysfunction, and agents that elevate intracellular NAD+ have shown promising results against many features of neurodegeneration.

  • Genomic instability, mitophagy, cellular senescence, protein aggregation and inflammation are being explored as therapeutic targets for neurodegenerative disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neurodegenerative disease prevalence.
Fig. 2: Hallmarks of ageing.
Fig. 3: NAD+, DNA damage, mitophagy, ageing and neurodegeneration pathways.
Fig. 4
Fig. 5: Cellular senescence and neurodegeneration.

Similar content being viewed by others

References

  1. Rose, M. R. Adaptation, aging, and genomic information. Aging 1, 444–450 (2009).

    Google Scholar 

  2. Carmona, J. J. & Michan, S. Biology of healthy aging and longevity. Rev. Invest. Clin. 68, 7–16 (2016).

    CAS  PubMed  Google Scholar 

  3. Alzheimer’s Association. 2018 Alzheimer’s disease facts and figures. Alzheimers Dement. 14, 367–429 (2018).

    Google Scholar 

  4. Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180–186 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Elobeid, A., Libard, S., Leino, M., Popova, S. N. & Alafuzoff, I. Altered proteins in the aging brain. J. Neuropathol. Exp. Neurol. 75, 316–325 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. Dean, D. C., 3rd et al. Brain differences in infants at differential genetic risk for late-onset Alzheimer disease: a cross-sectional imaging study. JAMA Neurol. 71, 11–22 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Schaefers, A. T. & Teuchert-Noodt, G. Developmental neuroplasticity and the origin of neurodegenerative diseases. World J. Biol. Psychiatry 17, 587–599 (2016).

    PubMed  Google Scholar 

  8. Nussbaum, R. L. & Ellis, C. E. Alzheimer’s disease and Parkinson’s disease. N. Engl. J. Med. 348, 1356–1364 (2003).

    CAS  PubMed  Google Scholar 

  9. Hy, L. X. & Keller, D. M. Prevalence of AD among whites: a summary by levels of severity. Neurology 55, 198–204 (2000).

    CAS  PubMed  Google Scholar 

  10. Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Primers 3, 17013 (2017).

    PubMed  Google Scholar 

  11. Mehta, P. et al. Prevalence of amyotrophic lateral sclerosis – United States, 2014. MMWR Morb. Mortal. Wkly. Rep. 67, 216–218 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. Robinson, J. L. et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain 141, 2181–2193 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chow, H. M. & Herrup, K. Genomic integrity and the ageing brain. Nat. Rev. Neurosci. 16, 672–684 (2015).

    CAS  PubMed  Google Scholar 

  15. Madabhushi, R., Pan, L. & Tsai, L. H. DNA damage and its links to neurodegeneration. Neuron 83, 266–282 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jeppesen, D. K., Bohr, V. A. & Stevnsner, T. DNA repair deficiency in neurodegeneration. Prog. Neurobiol. 94, 166–200 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Thanan, R. et al. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci. 16, 193–217 (2015).

    Google Scholar 

  18. McKinnon, P. J. Maintaining genome stability in the nervous system. Nat. Neurosci. 16, 1523–1529 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Maynard, S., Schurman, S. H., Harboe, C., de Souza-Pinto, N. C. & Bohr, V. A. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30, 2–10 (2009).

    CAS  PubMed  Google Scholar 

  20. Tell, G. & Demple, B. Base excision DNA repair and cancer. Oncotarget 6, 584–585 (2015).

    PubMed  Google Scholar 

  21. Leandro, G. S., Sykora, P. & Bohr, V. A. The impact of base excision DNA repair in age-related neurodegenerative diseases. Mutat. Res. 776, 31–39 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Akbari, M., Morevati, M., Croteau, D. & Bohr, V. A. The role of DNA base excision repair in brain homeostasis and disease. DNA Repair 32, 172–179 (2015).

    CAS  Google Scholar 

  23. Fang, E. F. et al. NAD(+) in aging: molecular mechanisms and translational implications. Trends Mol. Med. 23, 899–916 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Herrmann, M., Pusceddu, I., Marz, W. & Herrmann, W. Telomere biology and age-related diseases. Clin. Chem. Lab. Med. 56, 1210–1222 (2018).

    CAS  PubMed  Google Scholar 

  25. Eitan, E., Hutchison, E. R. & Mattson, M. P. Telomere shortening in neurological disorders: an abundance of unanswered questions. Trends Neurosci. 37, 256–263 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bradley-Whitman, M. A. & Lovell, M. A. Epigenetic changes in the progression of Alzheimer’s disease. Mech. Ageing Dev. 134, 486–495 (2013).

    CAS  PubMed  Google Scholar 

  27. Hwang, J. Y., Aromolaran, K. A. & Zukin, R. S. The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat. Rev. Neurosci. 18, 347–361 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tanaka, K. & Matsuda, N. Proteostasis and neurodegeneration: the roles of proteasomal degradation and autophagy. Biochim. Biophys. Acta 1843, 197–204 (2014).

    CAS  PubMed  Google Scholar 

  29. Johri, A. & Beal, M. F. Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther. 342, 619–630 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Keogh, M. J. & Chinnery, P. F. Mitochondrial DNA mutations in neurodegeneration. Biochim. Biophys. Acta 1847, 1401–1411 (2015).

    CAS  PubMed  Google Scholar 

  31. Greene, J. C. et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl Acad. Sci. USA 100, 4078–4083 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85, 257–273 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sliter, D. A. et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258–262 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fivenson, E. M. et al. Mitophagy in neurodegeneration and aging. Neurochem. Int. 109, 202–209 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Koentjoro, B., Park, J. S. & Sue, C. M. Nix restores mitophagy and mitochondrial function to protect against PINK1/parkin-related Parkinson’s disease. Sci. Rep. 7, 44373 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Di Rita, A. et al. AMBRA1-mediated mitophagy counteracts oxidative stress and apoptosis induced by neurotoxicity in human neuroblastoma SH-SY5Y cells. Front. Cell. Neurosci. 12, 92 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Yun, J. et al. MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. Elife 3, e01958 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. Haynes, C. M. & Ron, D. The mitochondrial UPR – protecting organelle protein homeostasis. J. Cell Sci. 123, 3849–3855 (2010).

    CAS  PubMed  Google Scholar 

  39. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).

    CAS  PubMed  Google Scholar 

  40. Kultz, D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol. 67, 225–257 (2005).

    PubMed  Google Scholar 

  41. Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of senescence. Genes Dev. 24, 2463–2479 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Loaiza, N. & Demaria, M. Cellular senescence and tumor promotion: is aging the key? Biochim. Biophys. Acta 1865, 155–167 (2016).

    CAS  PubMed  Google Scholar 

  43. Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wiley, C. D. et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 23, 303–314 (2016).

    CAS  PubMed  Google Scholar 

  45. Nacarelli, T. et al. NAD(+) metabolism governs the proinflammatory senescence-associated secretome. Nat. Cell Biol. 21, 397–407 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Maynard, S., Fang, E. F., Scheibye-Knudsen, M., Croteau, D. L. & Bohr, V. A. DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a025130 (2015).

  47. Barrio-Alonso, E., Hernandez-Vivanco, A., Walton, C. C., Perea, G. & Frade, J. M. Cell cycle reentry triggers hyperploidization and synaptic dysfunction followed by delayed cell death in differentiated cortical neurons. Sci. Rep. 8, 14316 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fielder, E., von Zglinicki, T. & Jurk, D. The DNA damage response in neurons: die by apoptosis or survive in a senescence-like state? J. Alzheimers Dis. 60, S107–S131 (2017).

    CAS  PubMed  Google Scholar 

  49. Jurk, D. et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11, 996–1004 (2012).

    CAS  PubMed  Google Scholar 

  50. Vaidya, A. et al. Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age. PLoS Genet. 10, e1004511 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Narita, M. et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332, 966–970 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gewirtz, D. A. Autophagy and senescence: a partnership in search of definition. Autophagy 9, 808–812 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kang, H. T., Lee, K. B., Kim, S. Y., Choi, H. R. & Park, S. C. Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS One 6, e23367 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kang, C. et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349, aaa5612 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. Bhatia-Dey, N., Kanherkar, R. R., Stair, S. E., Makarev, E. O. & Csoka, A. B. Cellular senescence as the causal nexus of aging. Front. Genet. 7, 13 (2016).

    PubMed  PubMed Central  Google Scholar 

  56. Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span – from yeast to humans. Science 328, 321–326 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Babbar, M. & Sheikh, M. S. Metabolic stress and disorders related to alterations in mitochondrial fission or fusion. Mol. Cell. Pharmacol. 5, 109–133 (2013).

    PubMed  PubMed Central  Google Scholar 

  58. Oh, J., Lee, Y. D. & Wagers, A. J. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat. Med. 20, 870–880 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Villeda, S. A. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 20, 659–663 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Amor, S. & Woodroofe, M. N. Innate and adaptive immune responses in neurodegeneration and repair. Immunology 141, 287–291 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. He, F. & Balling, R. The role of regulatory T cells in neurodegenerative diseases. Wiley Interdiscip. Rev. Syst. Biol. Med. 5, 153–180 (2013).

    CAS  PubMed  Google Scholar 

  62. Cao, W. & Zheng, H. Peripheral immune system in aging and Alzheimer’s disease. Mol. Neurodegener. 13, 51 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Giunta, S. Is inflammaging an auto[innate]immunity subclinical syndrome? Immun. Ageing 3, 12 (2006).

    PubMed  PubMed Central  Google Scholar 

  64. Currais, A. Ageing and inflammation – a central role for mitochondria in brain health and disease. Ageing Res. Rev. 21, 30–42 (2015).

    CAS  PubMed  Google Scholar 

  65. Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004).

    CAS  PubMed  Google Scholar 

  66. Hickman, S., Izzy, S., Sen, P., Morsett, L. & El Khoury, J. Microglia in neurodegeneration. Nat. Neurosci. 21, 1359–1369 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cunningham, C. Microglia and neurodegeneration: the role of systemic inflammation. Glia 61, 71–90 (2013).

    PubMed  Google Scholar 

  68. Youm, Y. H. et al. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab. 18, 519–532 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857–865 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Codolo, G. et al. Triggering of inflammasome by aggregated alpha-synuclein, an inflammatory response in synucleinopathies. PLoS One 8, e55375 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ona, V. O. et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 399, 263–267 (1999).

    CAS  PubMed  Google Scholar 

  72. Johann, S. et al. NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia 63, 2260–2273 (2015).

    PubMed  Google Scholar 

  73. Meissner, F., Molawi, K. & Zychlinsky, A. Mutant superoxide dismutase 1-induced IL-1β accelerates ALS pathogenesis. Proc. Natl Acad. Sci. USA 107, 13046–13050 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, W. Y., Tan, M. S., Yu, J. T. & Tan, L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann. Transl Med. 3, 136 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. Wang, W. et al. Caspase-1 causes truncation and aggregation of the Parkinson’s disease-associated protein α-synuclein. Proc. Natl Acad. Sci. USA 113, 9587–9592 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Uchoa, M. F., Moser, V. A. & Pike, C. J. Interactions between inflammation, sex steroids, and Alzheimer’s disease risk factors. Front. Neuroendocrinol. 43, 60–82 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Grune, T., Jung, T., Merker, K. & Davies, K. J. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int. J. Biochem. Cell Biol. 36, 2519–2530 (2004).

    CAS  PubMed  Google Scholar 

  78. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    CAS  PubMed  Google Scholar 

  79. Baker, D. J. & Petersen, R. C. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J. Clin. Invest. 128, 1208–1216 (2018).

    PubMed  PubMed Central  Google Scholar 

  80. Pan, M. R., Li, K., Lin, S. Y. & Hung, W. C. Connecting the dots: from DNA damage and repair to aging. Int. J. Mol. Sci. 17, 685 (2016).

    PubMed Central  Google Scholar 

  81. Frasca, D. & Blomberg, B. B. Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology 17, 7–19 (2016).

    CAS  PubMed  Google Scholar 

  82. Bektas, A., Schurman, S. H., Sen, R. & Ferrucci, L. Aging, inflammation and the environment. Exp. Gerontol. 105, 10–18 (2018).

    CAS  PubMed  Google Scholar 

  83. Valera, E. et al. Combination of alpha-synuclein immunotherapy with anti-inflammatory treatment in a transgenic mouse model of multiple system atrophy. Acta Neuropathol. Commun. 5, 2 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).

    CAS  PubMed  Google Scholar 

  85. Van Cauwenberghe, C., Vandendriessche, C., Libert, C. & Vandenbroucke, R. E. Caloric restriction: beneficial effects on brain aging and Alzheimer’s disease. Mamm. Genome 27, 300–319 (2016).

    PubMed  Google Scholar 

  86. Spielman, L. J., Little, J. P. & Klegeris, A. Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Res. Bull. 125, 19–29 (2016).

    CAS  PubMed  Google Scholar 

  87. Bekris, L. M., Yu, C. E., Bird, T. D. & Tsuang, D. W. Genetics of Alzheimer disease. J. Geriatr. Psychiatry Neurol. 23, 213–227 (2010).

    PubMed  PubMed Central  Google Scholar 

  88. Liu, C. C., Liu, C. C., Kanekiyo, T., Xu, H. & Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9, 106–118 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bloom, G. S. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 71, 505–508 (2014).

    PubMed  Google Scholar 

  90. Wang, J., Gu, B. J., Masters, C. L. & Wang, Y. J. A systemic view of Alzheimer disease – insights from amyloid-β metabolism beyond the brain. Nat. Rev. Neurol. 13, 612–623 (2017).

    CAS  PubMed  Google Scholar 

  91. Lane, C. A., Hardy, J. & Schott, J. M. Alzheimer’s disease. Eur. J. Neurol. 25, 59–70 (2018).

    CAS  PubMed  Google Scholar 

  92. Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Spillantini, M. G. & Goedert, M. Tau pathology and neurodegeneration. Lancet Neurol. 12, 609–622 (2013).

    CAS  PubMed  Google Scholar 

  94. Fu, W. Y., Wang, X. & Ip, N. Y. Targeting neuroinflammation as a therapeutic strategy for Alzheimer’s disease: mechanisms, drug candidates, and new opportunities. ACS Chem. Neurosci. 10, 872–879 (2019).

    CAS  PubMed  Google Scholar 

  95. Hardy, J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J. Neurochem. 110, 1129–1134 (2009).

    CAS  PubMed  Google Scholar 

  96. Hall, A. M. & Roberson, E. D. Mouse models of Alzheimer’s disease. Brain Res. Bull. 88, 3–12 (2012).

    CAS  PubMed  Google Scholar 

  97. Ewald, C. Y. & Li, C. Understanding the molecular basis of Alzheimer’s disease using a Caenorhabditis elegans model system. Brain Struct. Funct. 214, 263–283 (2010).

    CAS  PubMed  Google Scholar 

  98. Prussing, K., Voigt, A. & Schulz, J. B. Drosophila melanogaster as a model organism for Alzheimer’s disease. Mol. Neurodegener. 8, 35 (2013).

    PubMed  PubMed Central  Google Scholar 

  99. Tan, F. H. P. & Azzam, G. Drosophila melanogaster: deciphering Alzheimer’s disease. Malays. J. Med. Sci. 24, 6–20 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. Arber, C., Lovejoy, C. & Wray, S. Stem cell models of Alzheimer’s disease: progress and challenges. Alzheimers Res. Ther. 9, 42 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Teng, E. et al. Dietary DHA supplementation in an APP/PS1 transgenic rat model of AD reduces behavioral and Aβ pathology and modulates Aβ oligomerization. Neurobiol. Dis. 82, 552–560 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Lovell, M. A., Gabbita, S. P. & Markesbery, W. R. Increased DNA oxidation and decreased levels of repair products in Alzheimer’s disease ventricular CSF. J. Neurochem. 72, 771–776 (1999).

    CAS  PubMed  Google Scholar 

  103. Weissman, L. et al. Defective DNA base excision repair in brain from individuals with Alzheimer’s disease and amnestic mild cognitive impairment. Nucleic Acids Res. 35, 5545–5555 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Sykora, P. et al. DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. Nucleic Acids Res. 43, 943–959 (2015).

    CAS  PubMed  Google Scholar 

  105. Wang, H. Z. et al. Validating GWAS-identified risk loci for Alzheimer’s disease in Han Chinese populations. Mol. Neurobiol. 53, 379–390 (2016).

    CAS  PubMed  Google Scholar 

  106. Fang, E. F. et al. NAD(+) replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab. 24, 566–581 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Hou, Y. et al. NAD(+) supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc. Natl Acad. Sci. USA 115, E1876–E1885 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kwon, M. J., Kim, S., Han, M. H. & Lee, S. B. Epigenetic changes in neurodegenerative diseases. Mol. Cells 39, 783–789 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ow, S. Y. & Dunstan, D. E. A brief overview of amyloids and Alzheimer’s disease. Protein Sci. 23, 1315–1331 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kerr, J. S. et al. Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci. 40, 151–166 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Fang, E. F. et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 22, 401–412 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bhat, R. et al. Astrocyte senescence as a component of Alzheimer’s disease. PLoS One 7, e45069 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Boccardi, V., Pelini, L., Ercolani, S., Ruggiero, C. & Mecocci, P. From cellular senescence to Alzheimer’s disease: the role of telomere shortening. Ageing Res. Rev. 22, 1–8 (2015).

    CAS  PubMed  Google Scholar 

  114. Chinta, S. J. et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell Rep 22, 930–940 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Turnquist, C. et al. p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration. Cell Death Differ. 23, 1515–1528 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. He, N. et al. Amyloid-β(1-42) oligomer accelerates senescence in adult hippocampal neural stem/progenitor cells via formylpeptide receptor 2. Cell Death Dis. 4, e924 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kirkland, J. L. & Tchkonia, T. Cellular senescence: a translational perspective. EBioMedicine 21, 21–28 (2017).

    PubMed  PubMed Central  Google Scholar 

  118. Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang, P. et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci. 22, 719–728 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Musi, N. et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 17, e12840 (2018).

    PubMed  PubMed Central  Google Scholar 

  121. Talbot, K. et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest. 122, 1316–1338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Oddo, S. The role of mTOR signaling in Alzheimer disease. Front. Biosci. (Schol Ed) 4, 941–952 (2012).

    Google Scholar 

  123. Salminen, A., Kaarniranta, K., Haapasalo, A., Soininen, H. & Hiltunen, M. AMP-activated protein kinase: a potential player in Alzheimer’s disease. J. Neurochem. 118, 460–474 (2011).

    CAS  PubMed  Google Scholar 

  124. Camandola, S. & Mattson, M. P. Brain metabolism in health, aging, and neurodegeneration. EMBO J. 36, 1474–1492 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. De Felice, F. G. & Lourenco, M. V. Brain metabolic stress and neuroinflammation at the basis of cognitive impairment in Alzheimer’s disease. Front. Aging Neurosci. 7, 94 (2015).

    PubMed  PubMed Central  Google Scholar 

  126. Cai, H. et al. Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Curr. Alzheimer Res. 9, 5–17 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Simons, M. et al. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc. Natl Acad. Sci. USA 95, 6460–6464 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Vivar, C. Adult hippocampal neurogenesis, aging and neurodegenerative diseases: possible strategies to prevent cognitive impairment. Curr. Top. Med. Chem. 15, 2175–2192 (2015).

    CAS  PubMed  Google Scholar 

  129. McClean, P. L., Parthsarathy, V., Faivre, E. & Holscher, C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J. Neurosci. 31, 6587–6594 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Ho, L. et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J. 18, 902–904 (2004).

    CAS  PubMed  Google Scholar 

  131. Takamatsu, Y. et al. Combined immunotherapy with “anti-insulin resistance” therapy as a novel therapeutic strategy against neurodegenerative diseases. NPJ Parkinsons Dis. 3, 4 (2017).

    PubMed  PubMed Central  Google Scholar 

  132. Heneka, M. T., Reyes-Irisarri, E., Hull, M. & Kummer, M. P. Impact and therapeutic potential of PPARs in Alzheimer’s disease. Curr. Neuropharmacol. 9, 643–650 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Rotermund, C., Machetanz, G. & Fitzgerald, J. C. The therapeutic potential of metformin in neurodegenerative diseases. Front. Endocrinol. 9, 400 (2018).

    Google Scholar 

  134. Sarlus, H. & Heneka, M. T. Microglia in Alzheimer’s disease. J. Clin. Invest. 127, 3240–3249 (2017).

    PubMed  PubMed Central  Google Scholar 

  135. Melki, R. Role of different alpha-synuclein strains in synucleinopathies, similarities with other neurodegenerative diseases. J. Parkinsons Dis. 5, 217–227 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Rocha, E. M., De Miranda, B. & Sanders, L. H. Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol. Dis. 109, 249–257 (2018).

    CAS  PubMed  Google Scholar 

  137. Dias, V., Junn, E. & Mouradian, M. M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis. 3, 461–491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Hirsch, E. C. & Hunot, S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 8, 382–397 (2009).

    CAS  PubMed  Google Scholar 

  139. Sepe, S. et al. Inefficient DNA repair is an aging-related modifier of Parkinson’s disease. Cell Rep. 15, 1866–1875 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Labbe, C., Lorenzo-Betancor, O. & Ross, O. A. Epigenetic regulation in Parkinson’s disease. Acta Neuropathol. 132, 515–530 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Curry, D. W., Stutz, B., Andrews, Z. B. & Elsworth, J. D. Targeting AMPK signaling as a neuroprotective strategy in Parkinson’s disease. J. Parkinsons Dis. 8, 161–181 (2018).

    PubMed  PubMed Central  Google Scholar 

  142. Alecu, I. & Bennett, S. A. L. Dysregulated lipid metabolism and its role in α-synucleinopathy in Parkinson’s disease. Front. Neurosci. 13, 328 (2019).

    PubMed  PubMed Central  Google Scholar 

  143. Regensburger, M., Prots, I. & Winner, B. Adult hippocampal neurogenesis in Parkinson’s disease: impact on neuronal survival and plasticity. Neural Plast. 2014, 454696 (2014).

    PubMed  PubMed Central  Google Scholar 

  144. Kikuchi, T. et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 548, 592–596 (2017).

    CAS  PubMed  Google Scholar 

  145. McGeer, P. L., Itagaki, S., Boyes, B. E. & McGeer, E. G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38, 1285–1291 (1988).

    CAS  PubMed  Google Scholar 

  146. McKinnon, P. J. ATM and ataxia telangiectasia. EMBO Rep. 5, 772–776 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Walter, J. T., Alvina, K., Womack, M. D., Chevez, C. & Khodakhah, K. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat. Neurosci. 9, 389–397 (2006).

    CAS  PubMed  Google Scholar 

  148. Valentin-Vega, Y. A. et al. Mitochondrial dysfunction in ataxia-telangiectasia. Blood 119, 1490–1500 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Guo, Z., Kozlov, S., Lavin, M. F., Person, M. D. & Paull, T. T. ATM activation by oxidative stress. Science 330, 517–521 (2010).

    CAS  PubMed  Google Scholar 

  150. Hardiman, O. et al. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 3, 17071 (2017).

    PubMed  Google Scholar 

  151. Bates, G. P. et al. Huntington disease. Nat. Rev. Dis. Primers 1, 15005 (2015).

    PubMed  Google Scholar 

  152. Karikkineth, A. C., Scheibye-Knudsen, M., Fivenson, E., Croteau, D. L. & Bohr, V. A. Cockayne syndrome: clinical features, model systems and pathways. Ageing Res. Rev. 33, 3–17 (2017).

    CAS  PubMed  Google Scholar 

  153. Penndorf, D., Witte, O. W. & Kretz, A. DNA plasticity and damage in amyotrophic lateral sclerosis. Neural Regen. Res. 13, 173–180 (2018).

    PubMed  PubMed Central  Google Scholar 

  154. Cai, Z., Yan, L. J. & Ratka, A. Telomere shortening and Alzheimer’s disease. Neuromol. Med. 15, 25–48 (2013).

    CAS  PubMed  Google Scholar 

  155. Linkus, B. et al. Telomere shortening leads to earlier age of onset in ALS mice. Aging 8, 382–393 (2016).

    CAS  Google Scholar 

  156. Kota, L. N. et al. Reduced telomere length in neurodegenerative disorders may suggest shared biology. J. Neuropsychiatry Clin. Neurosci. 27, e92–e96 (2015).

    PubMed  Google Scholar 

  157. Block, R. C., Dorsey, E. R., Beck, C. A., Brenna, J. T. & Shoulson, I. Altered cholesterol and fatty acid metabolism in Huntington disease. J. Clin. Lipidol. 4, 17–23 (2010).

    PubMed  PubMed Central  Google Scholar 

  158. Allen, D. M. et al. Ataxia telangiectasia mutated is essential during adult neurogenesis. Genes Dev. 15, 554–566 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Amariglio, N. et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 6, e1000029 (2009).

    PubMed  PubMed Central  Google Scholar 

  160. Sapp, E. et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J. Neuropathol. Exp. Neurol. 60, 161–172 (2001).

    CAS  PubMed  Google Scholar 

  161. Henkel, J. S. et al. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann. Neurol. 55, 221–235 (2004).

    CAS  PubMed  Google Scholar 

  162. Hui, C. W., Song, X., Ma, F., Shen, X. & Herrup, K. Ibuprofen prevents progression of ataxia telangiectasia symptoms in ATM-deficient mice. J. Neuroinflammation 15, 308 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Chow, H. M. et al. ATM is activated by ATP depletion and modulates mitochondrial function through NRF1. J. Cell Biol. 218, 909–928 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Chen, J. et al. The impact of glutamine supplementation on the symptoms of ataxia-telangiectasia: a preclinical assessment. Mol. Neurodegener. 11, 60 (2016).

    PubMed  PubMed Central  Google Scholar 

  165. Trammell, S. A. et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat. Commun. 7, 12948 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhang, H. et al. NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443 (2016).

    CAS  PubMed  Google Scholar 

  167. Gomes, A. P. et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. De Jesus-Cortes, H. et al. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease. Proc. Natl Acad. Sci. USA 109, 17010–17015 (2012).

    PubMed  PubMed Central  Google Scholar 

  169. Phelan, M. J., Mulnard, R. A., Gillen, D. L. & Schreiber, S. S. Phase II clinical trial of nicotinamide for the treatment of mild to moderate Alzheimer’s disease. J. Geriatr. Med. Gerontol. 3, 021 (2017).

    Google Scholar 

  170. Ryu, D. et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 22, 879–888 (2016).

    CAS  PubMed  Google Scholar 

  171. Georgakopoulos, N. D., Wells, G. & Campanella, M. The pharmacological regulation of cellular mitophagy. Nat. Chem. Biol. 13, 136–146 (2017).

    CAS  PubMed  Google Scholar 

  172. Albani, D., Polito, L., Signorini, A. & Forloni, G. Neuroprotective properties of resveratrol in different neurodegenerative disorders. Biofactors 36, 370–376 (2010).

    CAS  PubMed  Google Scholar 

  173. Heilman, J., Andreux, P., Tran, N., Rinsch, C. & Blanco-Bose, W. Safety assessment of urolithin A, a metabolite produced by the human gut microbiota upon dietary intake of plant derived ellagitannins andellagic acid. Food Chem. Toxicol. 108, 289–297 (2017).

    CAS  PubMed  Google Scholar 

  174. Moreira, O. C. et al. Mitochondrial function and mitophagy in the elderly: effects of exercise. Oxid. Med. Cell. Longev. 2017, 2012798 (2017).

    PubMed  PubMed Central  Google Scholar 

  175. Herranz, N. et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 17, 1205–1217 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Walters, H. E., Deneka-Hannemann, S. & Cox, L. S. Reversal of phenotypes of cellular senescence by pan-mTOR inhibition. Aging 8, 231–244 (2016).

    CAS  Google Scholar 

  177. Katila, N. et al. Metformin lowers α-synuclein phosphorylation and upregulates neurotrophic factor in the MPTP mouse model of Parkinson’s disease. Neuropharmacology 125, 396–407 (2017).

    CAS  PubMed  Google Scholar 

  178. Ou, Z. et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain. Behav. Immun. 69, 351–363 (2018).

    CAS  PubMed  Google Scholar 

  179. Naylor, R. M., Baker, D. J. & van Deursen, J. M. Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin. Pharmacol. Ther. 93, 105–116 (2013).

    CAS  PubMed  Google Scholar 

  180. Krimpenfort, P. & Berns, A. Rejuvenation by therapeutic elimination of senescent cells. Cell 169, 3–5 (2017).

    CAS  PubMed  Google Scholar 

  181. Chiti, F. & Dobson, C. M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem 86, 27–68 (2017).

    CAS  PubMed  Google Scholar 

  182. Jack, C. R. Jr. et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).

    PubMed  PubMed Central  Google Scholar 

  183. Medina, M. An overview on the clinical development of tau-based therapeutics. Int. J. Mol. Sci. 19, 1160 (2018).

    PubMed Central  Google Scholar 

  184. Braak, H. & Braak, E. Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol. Scand. Suppl. 165, 3–12 (1996).

    CAS  PubMed  Google Scholar 

  185. Cummings, J., Lee, G., Ritter, A. & Zhong, K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement. 4, 195–214 (2018).

    Google Scholar 

  186. Cao, B. et al. Comparative efficacy and acceptability of antidiabetic agents for Alzheimer’s disease and mild cognitive impairment: a systematic review and network meta-analysis. Diabetes Obes. Metab. 20, 2467–2471 (2018).

    PubMed  Google Scholar 

  187. Miguel-Alvarez, M. et al. Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: a systematic review and meta-analysis of treatment effect. Drugs Aging 32, 139–147 (2015).

    CAS  PubMed  Google Scholar 

  188. Rees, K. et al. Non-steroidal anti-inflammatory drugs as disease-modifying agents for Parkinson’s disease: evidence from observational studies. Cochrane Database of Systematic Reviews 9, CD008454 (2011).

    Google Scholar 

  189. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02588677 (2018).

  190. Petrov, D., Mansfield, C., Moussy, A. & Hermine, O. ALS clinical trials review: 20 years of failure. are we any closer to registering a new treatment? Front. Aging Neurosci. 9, 68 (2017).

    PubMed  PubMed Central  Google Scholar 

  191. Vaiserman, A. M., Lushchak, O. V. & Koliada, A. K. Anti-aging pharmacology: promises and pitfalls. Ageing Res. Rev. 31, 9–35 (2016).

    PubMed  Google Scholar 

  192. Hernandez-Camacho, J. D., Bernier, M., Lopez-Lluch, G. & Navas, P. Coenzyme Q10 supplementation in aging and disease. Front. Physiol. 9, 44 (2018).

    PubMed  PubMed Central  Google Scholar 

  193. Li, T. & Chen, Z. J. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med. 215, 1287–1299 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Giraldez-Perez, R., Antolin-Vallespin, M., Munoz, M. & Sanchez-Capelo, A. Models of α-synuclein aggregation in Parkinson’s disease. Acta Neuropathol. Commun. 2, 176 (2014).

    PubMed  PubMed Central  Google Scholar 

  195. Reitz, C. & Mayeux, R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol. 88, 640–651 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Vina, J. & Lloret, A. Why women have more Alzheimer’s disease than men: gender and mitochondrial toxicity of amyloid-β peptide. J. Alzheimers Dis. 20, S527–S533 (2010).

    PubMed  Google Scholar 

  197. Luchsinger, J. A. et al. Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology 65, 545–551 (2005).

    CAS  PubMed  Google Scholar 

  198. Grant, W. B., Campbell, A., Itzhaki, R. F. & Savory, J. The significance of environmental factors in the etiology of Alzheimer’s disease. J. Alzheimers Dis. 4, 179–189 (2002).

    PubMed  Google Scholar 

  199. Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).

    CAS  PubMed  Google Scholar 

  200. Weintraub, D. & Stern, M. B. Psychiatric complications in Parkinson disease. Am. J. Geriatr. Psychiatry 13, 844–851 (2005).

    PubMed  Google Scholar 

  201. Mak, E. et al. Cognitive deficits in mild Parkinson’s disease are associated with distinct areas of grey matter atrophy. J. Neurol. Neurosurg. Psychiatry 85, 576–580 (2014).

    PubMed  Google Scholar 

  202. Talbott, E. O., Malek, A. M. & Lacomis, D. The epidemiology of amyotrophic lateral sclerosis. Handb. Clin. Neurol. 138, 225–238 (2016).

    CAS  PubMed  Google Scholar 

  203. Walker, F. O. Huntington’s disease. Lancet 369, 218–228 (2007).

    CAS  PubMed  Google Scholar 

  204. Subramaniam, S., Sixt, K. M., Barrow, R. & Snyder, S. H. Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science 324, 1327–1330 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Duff, K. et al. Psychiatric symptoms in Huntington’s disease before diagnosis: the Predict-HD study. Biol. Psychiatry 62, 1341–1346 (2007).

    PubMed  Google Scholar 

  206. Zweig, Y. R. & Galvin, J. E. Lewy body dementia: the impact on patients and caregivers. Alzheimers Res. Ther. 6, 21 (2014).

    PubMed  PubMed Central  Google Scholar 

  207. Rothblum-Oviatt, C. et al. Ataxia telangiectasia: a review. Orphanet J. Rare Dis. 11, 159 (2016).

    PubMed  PubMed Central  Google Scholar 

  208. Kleijer, W. J. et al. Incidence of DNA repair deficiency disorders in western Europe: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. DNA Repair 7, 744–750 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors’ research is supported by the Intramural Research Program of the NIH National Institute on Aging. The authors thank B. Yang and N. B. Fakouri for critical reading of the manuscript. The Bohr laboratory receives nicotinamide riboside as a gift from ChromaDex.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, Y.H., X.D., M.B., Y. W., D.L.C. and V.A.B. contributed substantially to the discussion of content, Y.H., X.D., M.B., Y.W., S.G.H., D.L.C. and V.A.B. wrote the article, and Y.H. and V.A.B reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Vilhelm A. Bohr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Dan, X., Babbar, M. et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15, 565–581 (2019). https://doi.org/10.1038/s41582-019-0244-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-019-0244-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing