Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Macroscopic gradients of synaptic excitation and inhibition in the neocortex

Abstract

With advances in connectomics, transcriptome and neurophysiological technologies, the neuroscience of brain-wide neural circuits is poised to take off. A major challenge is to understand how a vast diversity of functions is subserved by parcellated areas of mammalian neocortex composed of repetitions of a canonical local circuit. Areas of the cerebral cortex differ from each other not only in their input–output patterns but also in their biological properties. Recent experimental and theoretical work has revealed that such variations are not random heterogeneities; rather, synaptic excitation and inhibition display systematic macroscopic gradients across the entire cortex, and they are abnormal in mental illness. Quantitative differences along these gradients can lead to qualitatively novel behaviours in non-linear neural dynamical systems, by virtue of a phenomenon mathematically described as bifurcation. The combination of macroscopic gradients and bifurcations, in tandem with biological evolution, development and plasticity, provides a generative mechanism for functional diversity among cortical areas, as a general principle of large-scale cortical organization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Macroscopic gradients of synaptic excitation and bifurcations.
Fig. 2: Timescale hierarchies and their implications for functional connectivity.
Fig. 3: Macroscopic gradients of synaptic inhibition.
Fig. 4: Macroscopic gradients in schizophrenia.
Fig. 5: Two-dimensional gradients of primate cortex.

Similar content being viewed by others

References

  1. Mountcastle, V. B. The columnar organization of the neocortex. Brain 120, 701–722 (1997).

    PubMed  Google Scholar 

  2. Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hempel, C. M., Hartman, K. H., Wang, X.-J., Turrigiano, G. & Nelson, S. B. Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex. J. Neurophysiol. 83, 3031–3041 (2000).

    CAS  PubMed  Google Scholar 

  4. Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat. Neurosci. 9, 534–542 (2006).

    CAS  PubMed  Google Scholar 

  5. Wang, H., Stradtman, G. G., Wang, X.-J. & Gao, W. J. A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex. Proc. Natl Acad. Sci. USA 105, 16791–16796 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, B. et al. A subtype of inhibitory interneuron with intrinsic persistent activity in human and monkey neocortex. Cell Rep. 10, 1450–1458 (2015).

    CAS  PubMed  Google Scholar 

  7. Boldog, E. et al. Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type. Nat. Neurosci. 21, 1185–1195 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Douglas, R. J. & Martin, K. A. Behavioral architecture of the cortical sheet. Curr. Biol. 22, R1033–R1038 (2012).

    CAS  PubMed  Google Scholar 

  9. von Economo, C. The Cytoarchitectonics of the Human Cerebral Cortex (Oxford Univ. Press, 1929).

  10. Sanides, F. in The Structure and Function of the Nervous System (ed. Bourne, G. H.) 329–453 (Academic Press, 1972).

  11. Cahalane, D. J., Charvet, C. J. & Finlay, B. L. Modeling local and cross-species neuron number variations in the cerebral cortex as arising from a common mechanism. Proc. Natl Acad. Sci. USA 111, 17642–17647 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Harris, K. D. & Shepherd, G. M. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Amunts, K. & Zilles, K. Architectonic mapping of the human brain beyond Brodmann. Neuron 88, 1086–1107 (2015).

    CAS  PubMed  Google Scholar 

  14. Barbas, H. General cortical and special prefrontal connections: principles from structure to function. Annu. Rev. Neurosci. 38, 269–289 (2015).

    CAS  PubMed  Google Scholar 

  15. Seung, H. S. Connectome: How the Brain’s Wiring Makes Who We Are (Houghton Mifflin Harcourt, 2012).

  16. Sporns, O. Contributions and challenges for network models in cognitive neuroscience. Nat. Neurosci. 17, 652–660 (2014).

    CAS  PubMed  Google Scholar 

  17. Scholtens, L. H., Schmidt, R., de Reus, M. A. & van den Heuvel, M. P. Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome. J. Neurosci. 34, 12192–12205 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Eickhoff, S. B., Yeo, B. T. T. & Genon, S. Imaging-based parcellations of the human brain. Nat. Rev. Neurosci. 19, 672–686 (2018).

    CAS  PubMed  Google Scholar 

  20. Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340–352 (2017).

    CAS  PubMed  Google Scholar 

  21. Maunsell, J. H. & Van Essen, D. C. The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J. Neurosci. 3, 2563–2586 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    CAS  PubMed  Google Scholar 

  23. Markov, N. T. et al. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J. Comp. Neurol. 522, 225–259 (2014).

    PubMed  Google Scholar 

  24. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    CAS  PubMed  Google Scholar 

  25. Binzegger, T., Douglas, R. J. & Martin, K. A. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gilbert, C. D. & Li, W. Top-down influences on visual processing. Nat. Rev. Neurosci. 14, 350–363 (2013).

    CAS  PubMed  Google Scholar 

  27. Harris, K. D. & Mrsic-Flogel, T. D. Cortical connectivity and sensory coding. Nature 503, 51–58 (2013).

    CAS  PubMed  Google Scholar 

  28. Strogatz, S. H. Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry and Engineering 2nd edn (Taylor & Francis, 2016)

  29. Elston, G. in Evolution of the Nervous Systems: a Comprehensive Reference Vol. 4 (eds Kaass, J. H. & Preuss, T. M.) 191–242 (Elsevier, 2007).

  30. Chaudhuri, R., Knoblauch, K., Gariel, M. A., Kennedy, H. & Wang, X.-J. A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron 88, 419–431 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ballesteros-Yanez, I., Benavides-Piccione, R., Bourgeois, J. P., Changeux, J. P. & DeFelipe, J. Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors. Proc. Natl Acad. Sci. USA 107, 11567–11572 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gilman, J. P., Medalla, M. & Luebke, J. I. Area-specific features of pyramidal neurons—a comparative study in mouse and rhesus monkey. Cereb. Cortex 27, 2078–2094 (2017).

    PubMed  Google Scholar 

  33. Markov, N. T. et al. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2014).

    CAS  PubMed  Google Scholar 

  34. Goldman-Rakic, P. S. in Handbook of Physiology — The Nervous System V (eds Plum, F. & Mountcastle, V.) 373–417 (American Physiological Society, 1987).

  35. Amit, D. J. The Hebbian paradigm reintegrated: local reverberations as internal representations. Behav. Brain Sci. 18, 617–626 (1995).

    Google Scholar 

  36. Wang, X.-J. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 24, 455–463 (2001).

    CAS  PubMed  Google Scholar 

  37. Brunel, N. & Wang, X.-J. Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J. Comput. Neurosci. 11, 63–85 (2001).

    CAS  PubMed  Google Scholar 

  38. Wang, X.-J. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci. 19, 9587–9603 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, M. et al. NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron 77, 736–749 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, X.-J. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955–968 (2002).

    CAS  PubMed  Google Scholar 

  41. Glasser, M. F. & Van Essen, D. C. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J. Neurosci. 31, 11597–11616 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Huntenburg, J. M. et al. A systematic relationship between functional connectivity and intracortical myelin in the human cerebral cortex. Cereb. Cortex 27, 981–997 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Burt, J. B. et al. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat. Neurosci. 21, 1251–1259 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hawrylycz, M. et al. Canonical genetic signatures of the adult human brain. Nat. Neurosci. 18, 1832–1844 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Quinlan, E. M., Olstein, D. H. & Bear, M. F. Bidirectional, experience-dependent regulation of N-methyl-d-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proc. Natl Acad. Sci. USA 96, 12876–12880 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Harris, J. A. et al. Hierarchical organization of cortical and thalamic connectivity. Nature 575, 195–202 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    CAS  PubMed  Google Scholar 

  48. Fulcher, B. D., Murray, J. D., Zerbi, V. & Wang, X.-J. Multimodal gradients across mouse cortex. Proc. Natl Acad. Sci. USA 116, 4689–4695 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pérez-Otaño, I., Larsen, R. S. & Wesseling, J. F. Emerging roles of GluN3-containing NMDA receptors in the CNS. Nat. Rev. Neurosci. 17, 623–635 (2016).

    PubMed  Google Scholar 

  50. Barthélemy, M. Spatial networks. Phys. Rep. 499, 1–101 (2011).

    Google Scholar 

  51. Markov, N. T. et al. Cortical high-density counterstream architectures. Science 342, 1238406 (2013).

    PubMed  PubMed Central  Google Scholar 

  52. Ercsey-Ravasz, M. et al. A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80, 184–197 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Song, H. F., Kennedy, H. & Wang, X.-J. Spatial embedding of similarity structure in the cerebral cortex. Proc. Natl Acad. Sci. USA 111, 16580–16585 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, X.-J. & Kennedy, H. Brain structure and dynamics across scales: in search of rules. Curr. Opin. Neurobiol. 37, 92–98 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mejias, J. F., Murray, J. D., Kennedy, H. & Wang, X. J. Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex. Sci. Adv. 2, e1601335 (2016).

    PubMed  PubMed Central  Google Scholar 

  56. Joglekar, M. R., Mejias, J. F., Yang, G. R. & Wang, X.-J. Inter-areal balanced amplification enhances signal propagation in a large-scale circuit model of the primate cortex. Neuron 98, 222–234 (2018).

    CAS  PubMed  Google Scholar 

  57. Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17, 1661–1663 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Siegle, J. H. et al. A survey of spiking activity reveals a functional hierarchy of mouse corticothalamic visual areas. Biorxiv https://doi.org/10.1101/805010 (2019).

    Article  Google Scholar 

  59. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    CAS  PubMed  Google Scholar 

  60. Wang, X.-J. Decision making in recurrent neuronal circuits. Neuron 60, 215–234 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kiebel, S. J., Daunizeau, J. & Friston, K. J. A hierarchy of time-scales and the brain. PLOS Comput. Biol. 4, e1000209 (2008).

    PubMed  PubMed Central  Google Scholar 

  62. Hasson, U., Yang, E., Vallines, I., Heeger, D. J. & Rubin, N. A hierarchy of temporal receptive windows in human cortex. J. Neurosci. 28, 2539–2550 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Honey, C. J. et al. Slow cortical dynamics and the accumulation of information over long timescales. Neuron 76, 423–434 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hasson, U., Chen, J. & Honey, C. J. Hierarchical process memory: memory as an integral component of information processing. Trends Cogn. Sci. 19, 304–313 (2015).

    PubMed  PubMed Central  Google Scholar 

  65. Maunsell, J. H. & Newsome, W. T. Visual processing in monkey extrastriate cortex. Annu. Rev. Neurosci. 10, 363–401 (1987).

    CAS  PubMed  Google Scholar 

  66. Chaudhuri, R., Bernacchia, A. & Wang, X.-J. A diversity of localized timescales in network activity. eLife 3, e01239 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. Rodriguez-Vazquez, B. et al. Gradients of structure–function tethering across neocortex. Proc. Natl Acad. Sci. USA 116, 21219–21227 (2019).

    Google Scholar 

  68. Demirtaş, M. et al. Hierarchical heterogeneity across human cortex shapes large-scale neural dynamics. Neuron 101, 1181–1194 (2019).

    PubMed  PubMed Central  Google Scholar 

  69. Deco, G., Rolls, E. T., Albantakis, L. & Romo, R. Brain mechanisms for perceptual and reward-related decision-making. Prog. Neurobiol. 103, 194–213 (2013).

    PubMed  Google Scholar 

  70. Deco, G. et al. How local excitation–inhibition ratio impacts the whole brain dynamics. J. Neurosci. 34, 7886–7898 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wong, K. F. & Wang, X.-J. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26, 1314–1328 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Friston, K. J., Mechelli, A., Turner, R. & Price, C. J. Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. Neuroimage 12, 466–477 (2000).

    CAS  PubMed  Google Scholar 

  73. Deco, G. & Jirsa, V. K. Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J. Neurosci. 32, 3366–3375 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, P. et al. Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain. Sci. Adv. 5, eaat7854 (2019).

    PubMed  PubMed Central  Google Scholar 

  75. van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996).

    PubMed  Google Scholar 

  76. Freund, T. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    CAS  PubMed  Google Scholar 

  77. DeFelipe, J. Cortical interneurons: from Cajal to 2001. Prog. Brain Res. 136, 215–238 (2002).

    PubMed  Google Scholar 

  78. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807 (2004).

    CAS  PubMed  Google Scholar 

  79. Paul, A. et al. Transcriptional architecture of synaptic communication delineates GABAergic neuron identity. Cell 171, 522–539 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Condé, F., Lund, J. S., Jacobowitz, D. M., Baimbridge, K. G. & Lewis, D. A. Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefrontal cortex: distribution and morphology. J. Comp. Neurol. 341, 95–116 (1994).

    PubMed  Google Scholar 

  81. Wang, X.-J. in The Prefrontal Lobes: Development, Function and Pathology (eds Risberg, J., Grafman, J. & Boller, F.) 92–127 (Cambridge Univ. Press, 2006).

  82. Wang, X.-J., Tegnér, J., Constantinidis, C. & Goldman-Rakic, P. S. Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. Proc. Natl Acad. Sci. USA 101, 1368–1373 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kepecs, A. & Fishell, G. Interneuron cell types are fit to function. Nature 505, 318–326 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Tremblay, R., Lee, S. & Rudy, B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91, 260–292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, Y. et al. Brain-wide maps reveal stereotyped cell-type-based cortical architecture and subcortical sexual dimorphism. Cell 171, 456–469 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Somers, D. C., Nelson, S. B. & Sur, M. An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448–5465 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Callaway, E. M. Feedforward, feedback and inhibitory connections in primate visual cortex. Neural Netw. 17, 625–632 (2004).

    PubMed  Google Scholar 

  88. Buzsáki, G. Rhythms of the Brain (Oxford Univ. Press, 2006).

  89. Wang, X.-J. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268 (2010).

    PubMed  Google Scholar 

  90. Yang, G. R., Murray, J. D. & Wang, X.-J. A dendritic disinhibitory circuit mechanism for pathway-specific gating. Nat. Commun. 7, 12815 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, X.-J. & Yang, G. R. A disinhibitory circuit motif and flexible information routing in the brain. Curr. Opin. Neurobiol. 49, 75–83 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Stephan, K. E., Friston, K. J. & Frith, C. D. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr. Bull. 35, 509–527 (2009).

    PubMed  PubMed Central  Google Scholar 

  93. Yang, G. J. et al. Functional hierarchy underlies preferential connectivity disturbances in schizophrenia. Proc. Natl Acad. Sci. USA 113, E219–E228 (2016).

    CAS  PubMed  Google Scholar 

  94. Krystal, J. H. et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51, 199–214 (1994).

    CAS  PubMed  Google Scholar 

  95. Anticevic, A. & Lisman, J. How can global alteration of excitation/inhibition balance lead to the local dysfunctions that underlie schizophrenia? Biol. Psychiatry 81, 818–820 (2017).

    PubMed  Google Scholar 

  96. Hoftman, G. D. et al. Altered gradients of glutamate and γ-aminobutyric acid transcripts in the cortical visuospatial working memory network in schizophrenia. Biol. Psychiatry 83, 670–679 (2018).

    CAS  PubMed  Google Scholar 

  97. Kana, R. K., Libero, L. E. & Moore, M. S. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders. Phys. Life Rev. 8, 410–437 (2011).

    PubMed  Google Scholar 

  98. Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat. Neurosci. 9, 99–107 (2006).

    CAS  PubMed  Google Scholar 

  99. Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang, X.-J. & Krystal, J. H. Computational psychiatry. Neuron 84, 638–654 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Zilles, K. & Palomero-Gallagher, N. Multiple transmitter receptors in regions and layers of the human cerebral cortex. Front. Neuroanat. 11, 78 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Collins, C. E., Airey, D. C., Young, N. A., Leitch, D. B. & Kaas, J. H. Neuron densities vary across and within cortical areas in primates. Proc. Natl Acad. Sci. USA 107, 15927–15932 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. D’Souza, R. D., Meier, A. M., Bista, P., Wang, Q. & Burkhalter, A. Recruitment of inhibition and excitation across mouse visual cortex depends on the hierarchy of interconnecting areas. eLife https://doi.org/10.7554/eLife.19332 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Bastos, A. M. et al. Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85, 390–401 (2015).

    CAS  PubMed  Google Scholar 

  105. Michalareas, G. et al. α–β and γ rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89, 384–397 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Barbas, H. & Rempel-Clower, N. Cortical structure predicts the pattern of corticocortical connections. Cereb. Cortex 7, 635–646 (1997).

    CAS  PubMed  Google Scholar 

  107. Goulas, A., Zilles, K. & Hilgetag, C. C. Cortical gradients and laminar projections in mammals. Trends Neurosci. 41, 775–788 (2018).

    CAS  PubMed  Google Scholar 

  108. Fuster, J. M. The Prefrontal Cortex 4th edn (Academic Press, 2008).

  109. Koechlin, E., Ody, C. & Kouneiher, F. The architecture of cognitive control in the human prefrontal cortex. Science 302, 1181–1185 (2003).

    CAS  PubMed  Google Scholar 

  110. Badre, D., Hoffman, J., Cooney, J. W. & D’Esposito, M. Hierarchical cognitive control deficits following damage to the human frontal lobe. Nat. Neurosci. 12, 515–522 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Badre, D. & D’Esposito, M. Is the rostro-caudal axis of the frontal lobe hierarchical? Nat. Rev. Neurosci. 10, 659–669 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Mesulam, M.-M. Principles of Behavioral and Cognitive Neurology 2nd edn (Oxford Univ. Press, 2000).

  113. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    PubMed  Google Scholar 

  115. Ermentrout, G. B. Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys. 61, 353–430 (1998).

    Google Scholar 

  116. Gabbiani, F. & Cox, S. J. Mathematics for Neuroscientists (Academic Press, 2010).

  117. Izhikevich, E. Dynamical Systems in Neuroscience (MIT Press, 2007).

  118. Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition (Cambridge Univ. Press, 2014).

  119. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, 255 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. Allen, W. E. et al. Thirst regulates motivated behavior through modulation of brainwide neural population dynamics. Science 364, 253 (2019).

    PubMed  PubMed Central  Google Scholar 

  122. Grundemann, J. et al. Amygdala ensembles encode behavioral states. Science 364, eaav8736 (2019).

    PubMed  Google Scholar 

  123. Siegel, M., Buschman, T. J. & Miller, E. K. Cortical information flow during flexible sensorimotor decisions. Science 348, 1352–1355 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Dotson, N. M., Hoffman, S. J., Goodell, B. & Gray, C. M. Feature-based visual short-term memory is widely distributed and hierarchically organized. Neuron 99, 215–226 (2018).

    CAS  PubMed  Google Scholar 

  125. Fodor, J. A. The Modularity of Mind: An Essay on Faculty Psychology (MIT Press, 1983).

Download references

Acknowledgements

The author thanks R. Chaudhuri, J. Murray, G.Y. Yang, F. Song, J. Mejias, M. Joglekar, X. Ding, B. Fulcher and V. Zerbi for their contributions and help with figures, and H. Kennedy and D. Bliss for their comments on the manuscript. This work was supported by the US Office of Naval Research (ONR) grant N00014-17-1-2041, US National Institutes of Health (NIH) grant 062349 and the Simons Collaboration on the Global Brain program grant 543057SPI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jing Wang.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks C. Constantinidis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XJ. Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat Rev Neurosci 21, 169–178 (2020). https://doi.org/10.1038/s41583-020-0262-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-020-0262-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing