Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bacterial biodiversity drives the evolution of CRISPR-based phage resistance

Abstract

About half of all bacteria carry genes for CRISPR–Cas adaptive immune systems1, which provide immunological memory by inserting short DNA sequences from phage and other parasitic DNA elements into CRISPR loci on the host genome2. Whereas CRISPR loci evolve rapidly in natural environments3,4, bacterial species typically evolve phage resistance by the mutation or loss of phage receptors under laboratory conditions5,6. Here we report how this discrepancy may in part be explained by differences in the biotic complexity of in vitro and natural environments7,8. Specifically, by using the opportunistic pathogen Pseudomonas aeruginosa and its phage DMS3vir, we show that coexistence with other human pathogens amplifies the fitness trade-offs associated with the mutation of phage receptors, and therefore tips the balance in favour of the evolution of CRISPR-based resistance. We also demonstrate that this has important knock-on effects for the virulence of P. aeruginosa, which became attenuated only if the bacteria evolved surface-based resistance. Our data reveal that the biotic complexity of microbial communities in natural environments is an important driver of the evolution of CRISPR–Cas adaptive immunity, with key implications for bacterial fitness and virulence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biodiversity affects the evolution of phage resistance.
Fig. 2: Biodiversity amplifies fitness costs associated with surface-based resistance.
Fig. 3: Evolution of phage resistance affects in vivo virulence.

Similar content being viewed by others

Data availability

All data used in this study are available on figshare at https://doi.org/10.6084/m9.figshare.9752903.

References

  1. Grissa, I., Vergnaud, G. & Pourcel, C. CRISPRcompar: a website to compare clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 36, W145–W148 (2008).

    Article  CAS  Google Scholar 

  2. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    Article  CAS  ADS  Google Scholar 

  3. Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320, 1047–1050 (2008).

    Article  CAS  ADS  Google Scholar 

  4. Laanto, E., Hoikkala, V., Ravantti, J. & Sundberg, L. R. Long-term genomic coevolution of host–parasite interaction in the natural environment. Nat. Commun. 8, 111 (2017).

    Article  ADS  Google Scholar 

  5. Westra, E. R. et al. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr. Biol. 25, 1043–1049 (2015).

    Article  CAS  Google Scholar 

  6. van Houte, S., Buckling, A. & Westra, E. R. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev. 80, 745–763 (2016).

    Article  Google Scholar 

  7. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).

    Article  CAS  Google Scholar 

  8. O’Toole, G. A. Cystic fibrosis airway microbiome: overturning the old, opening the way for the new. J. Bacteriol. 200, 1–8 (2018).

    Google Scholar 

  9. Folkesson, A. et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat. Rev. Microbiol. 10, 841–851 (2012).

    Article  CAS  Google Scholar 

  10. Roach, D. R. & Debarbieux, L. Phage therapy: awakening a sleeping giant. Emerg. Top. Life Sci. 1, 93–103 (2017).

    Article  CAS  Google Scholar 

  11. Rossitto, M., Fiscarelli, E. V. & Rosati, P. Challenges and promises for planning future clinical research into bacteriophage therapy against Pseudomonas aeruginosa in cystic fibrosis. An argumentative review. Front. Microbiol. 9, 775 (2018).

    Article  Google Scholar 

  12. De Smet, J., Hendrix, H., Blasdel, B. G., Danis-Wlodarczyk, K. & Lavigne, R. Pseudomonas predators: understanding and exploiting phage–host interactions. Nat. Rev. Microbiol. 15, 517–530 (2017).

    Article  Google Scholar 

  13. Chabas, H., van Houte, S., Høyland-Kroghsbo, N. M., Buckling, A. & Westra, E. R. Immigration of susceptible hosts triggers the evolution of alternative parasite defence strategies. Proc. R. Soc. B 283, 20160721 (2016).

    Article  Google Scholar 

  14. Harrison, F. Microbial ecology of the cystic fibrosis lung. Microbiology 153, 917–923 (2007).

    Article  CAS  Google Scholar 

  15. O’Brien, S. & Fothergill, J. L. The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung. FEMS Microbiol. Lett. 364, 1–10 (2017).

    Google Scholar 

  16. Bhargava, N., Sharma, P. & Capalash, N. Pyocyanin stimulates quorum sensing-mediated tolerance to oxidative stress and increases persister cell populations in Acinetobacter baumannii. Infect. Immun. 82, 3417–3425 (2014).

    Article  Google Scholar 

  17. Rocha, G. A. et al. Species distribution, sequence types and antimicrobial resistance of Acinetobacter spp. from cystic fibrosis patients. Epidemiol. Infect. 146, 524–530 (2018).

    Article  CAS  Google Scholar 

  18. Diraviam Dinesh, S. & Diraviam Dinesh, S. Artificial sputum medium. Protoc. Exchange https://doi.org/10.1038/protex.2010.212 (2010).

  19. An, D., Danhorn, T., Fuqua, C. & Parsek, M. R. Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures. Proc. Natl Acad. Sci. USA 103, 3828–3833 (2006).

    Article  CAS  ADS  Google Scholar 

  20. León, M. & Bastías, R. Virulence reduction in bacteriophage resistant bacteria. Front. Microbiol. 6, 343 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Kavanagh, K. & Reeves, E. P. Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol. Rev. 28, 101–112 (2004).

    Article  CAS  Google Scholar 

  22. Hernandez, R. J. et al. Using the wax moth larva Galleria mellonella infection model to detect emerging bacterial pathogens. PeerJ 6, e6150 (2019).

    Article  Google Scholar 

  23. Craig, L., Pique, M. E. & Tainer, J. A. Type IV pilus structure and bacterial pathogenicity. Nat. Rev. Microbiol. 2, 363–378 (2004).

    Article  CAS  Google Scholar 

  24. Johnson, P. T. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).

    Article  Google Scholar 

  25. Alizon, S., de Roode, J. C. & Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 16, 556–567 (2013).

    Article  Google Scholar 

  26. Benmayor, R., Hodgson, D. J., Perron, G. G. & Buckling, A. Host mixing and disease emergence. Curr. Biol. 19, 764–767 (2009).

    Article  CAS  Google Scholar 

  27. Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).

    Article  CAS  ADS  Google Scholar 

  28. Chabas, H. et al. Evolutionary emergence of infectious diseases in heterogeneous host populations. PLoS Biol. 16, e2006738 (2018).

    Article  Google Scholar 

  29. van Houte, S. et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532, 385–388 (2016).

    Article  ADS  Google Scholar 

  30. Wright, R. C. T., Friman, V. P., Smith, M. C. M. & Brockhurst, M. A. Cross-resistance is modular in bacteria–phage interactions. PLoS Biol. 16, e2006057 (2018).

    Article  Google Scholar 

  31. Martínez-García, E., Calles, B., Arévalo-Rodríguez, M. & de Lorenzo, V. pBAM1: an all-synthetic genetic tool for analysis and construction of complex bacterial phenotypes. BMC Microbiol. 11, 38 (2011).

    Article  Google Scholar 

  32. Goto, M. et al. Real-time PCR method for quantification of Staphylococcus aureus in milk. J. Food Prot. 70, 90–96 (2007).

    Article  CAS  Google Scholar 

  33. R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2018).

  34. Wickham, H. tidyverse: Easily Install and Load the 'Tidyverse'. R package version 1.2.1 https://cran.r-project.org/web/packages/tidyverse/index.html (2017).

  35. Therneau, T. A Package for Survival Analysis in S. R package version 2.38 https://CRAN.R-project.org/package=survival (2015).

Download references

Acknowledgements

We thank A. Buckling for critical reading of the manuscript, J. Common, E. Hesse and S. Meaden for comments on the manuscript, and J. P. Pirnay and D. de Vos for sharing clinical isolates of S. aureus, A. baumannii and B. cenocepacia. This work was supported by grants from the ERC (ERC-STG-2016-714478 - EVOIMMECH) and the NERC (NE/M018350/1), which were awarded to E.R.W.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization of the study was done by E.O.A. and E.R.W. Experimental design was carried out by E.O.A., A.M.L., C.R. and E.R.W. Adsorption and infection assays were done by E.O.A. All evolution experiments were performed by E.O.A., E.P. and I.M. E.O.A. performed the DNA extractions and qPCR reactions, and the competition experiments, virulence assays and motility assays were performed by E.O.A. and E.P. Formal analysis of results was done by E.O.A., E.P., C.R. and E.R.W. The original draft was written by E.O.A., with later edits and reviews by E.O.A. and E.R.W.

Corresponding authors

Correspondence to Ellinor O. Alseth or Edze R. Westra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Only P. aeruginosa adsorbs phage DMS3vir.

Phage levels (in p.f.u. ml−1) in minutes after infection of P. aeruginosa PA14 and three other bacterial species (n = 84 biologically independent replicates). Controls were carried out in the absence of bacteria. Here, the lines are regression slopes with shaded areas corresponding to 95% confidence intervals. Linear model: effect of P. aeruginosa on phage titre over time; t = −3.37, P = 0.0009; S. aureus; t = 1.63, P = 0.11; A. baumannii; t = 1.20, P = 0.23; B. cenocepacia; t = −0.27, P = 0.79; overall model fit; F9,235 = 4.33, adjusted R2 = 0.11, P = 3.17 × 10−5

Source Data.

Extended Data Fig. 2 Enhanced CRISPR resistance evolution in ASM.

Proportion of P. aeruginosa that acquired surface modification or CRISPR-based immunity (or remained sensitive) 3 d.p.i. with phage DMS3vir when grown in ASM (6 replicates per treatment, with 24 colonies screened from each replicate, n = 30 biologically independent replicates). Deviance test: relationship between community composition and CRISPR; residual deviance (25, n = 30) = 1.26, P = 2.2 × 10−16; Tukey contrasts: monoculture versus mixed; z = −5.30, P = 1 × 10−4; monoculture versus A. baumannii; z = −5.60, P = 1 × 10−4; monoculture versus B. cenocepacia; z = −2.80, P = 0.02; monoculture versus S. aureus; z = −0.76, P = 0.93. Data are mean ± s.e.m

Source Data.

Extended Data Fig. 3 Increased evolution of CRISPR-based resistance across a range of microbial community compositions over time.

Proportion of P. aeruginosa that acquired surface modification or CRISPR-based immunity (or remained sensitive) at up to 3 d.p.i. with phage DMS3vir when grown either in monoculture (100%) or in polyculture mixtures consisting of the mixed microbial community but with varying starting percentages of P. aeruginosa based on volume (6 replicates for most samples, with 24 colonies per replicate, n = 42 biologically independent replicates for a, n = 32 biologically independent replicates for b, and n = 42 biologically independent replicates for c). a, Resistance evolution at 1 d.p.i. Data are mean ± s.e.m. Deviance test: relationship between CRISPR and P. aeruginosa starting percentage at time point 1; residual deviance (35, n = 42) = 4.42, P = 0.004; 1%; z = −3.27, P = 0.002; 10%; z = 1.21, P = 0.23; 25%; z = 1.62, P = 0.11; 50%; z = 2.20, P = 0.034; 90%; z = 2.07, P = 0.046; 99%; z = 0.47, P = 0.65; 100%; z = 1.47, P = 0.15. b, Resistance evolution at 2 d.p.i. Data are mean ± s.e.m. Deviance test: relationship between CRISPR and P. aeruginosa starting percentage at time point 2; residual deviance (25, n = 32) = 3.86, P = 2.51 × 10−6; 1%; z = −2.14, P = 0.04; 10%; z = 1.19, P = 0.25; 25%; z = 2.07, P = 0.049; 50%; z = 1.89, P = 0.07; 90%; z = 1.12, P = 0.27; 99%; z = 1.21, P = 0.24; 100%; z = 1.11, P = 0.28. c, Resistance evolution at 3 d.p.i. Data are mean ± s.e.m. Deviance test: relationship between CRISPR and P. aeruginosa starting percentage at time point 3; residual deviance (35, n = 42) = 8.24, P = 0.0004; 1%; z = −3.38, P = 0.002; 10%; z = 2.12, P = 0.04; 25%; z = 2.77, P = 0.009; 50%; z = 3.07, P = 0.004; 90%; z = 2.46, P = 0.019; 99%; z = 1.55, P = 0.13; 100%; z = 0.87, P = 0.39

Source Data.

Extended Data Fig. 4 Microbial community composition affects phage epidemic size.

The DMS3vir phage titres (in p.f.u. ml−1) over time up to 3 d.p.i. of P. aeruginosa grown either in monoculture (100%) or in polyculture mixtures as shown in Extended Data Fig. 3. Each data point represents the mean, error bars denote s.e.m. (n = 171 independent biological samples). Two-way ANOVA: overall effect of P. aeruginosa starting percentage on phage titre; F6,105 = 14.84, P = 1.1 × 10−12

Source Data.

Extended Data Fig. 5 No correlation between phage epidemic size and evolution of CRISPR resistance.

The correlation between the proportion of evolved phage-resistant clones with CRISPR-based resistance and the phage epidemic sizes (in p.f.u. ml−1) in the presence of other bacterial species, using data taken from experiments shown in Fig. 1, Extended Data Figs. 2, 3c and 6 (n = 137 biologically independent samples per time point). Correlations are separated by day, as phage titres were measured daily. Here, the lines are regression slopes, with shaded areas corresponding to 95% confidence intervals. Pearson’s product–moment correlation tests between phage titres (at each day after infection) and levels of CRISPR-based resistance: T = 1; t136 = −0.02, P = 0.98, R2 = −0.002; T = 2; t136 = 0.59, P = 0.55, R2 = 0.05; T = 3; t136 = −0.90, P = 0.37, R2 = −0.08

Source Data.

Extended Data Fig. 6 Starting phage titre does not affect CRISPR evolution in the presence of a microbial community.

Proportion of P. aeruginosa that acquired CRISPR-based resistance at 3 d.p.i. with varying starting titres of phage DMS3vir when grown in polyculture (6 replicates per treatment, with 24 colonies per replicate, n = 24 biologically independent replicates). Deviance test: start phage and CRISPR; residual deviance (20, n = 24) = 2.00, P = 0.13; Tukey contrasts: 102 versus 104; z = −1.52, P = 0.42; 104 versus 106; z = −0.76, P = 0.87; 106 versus 108; z = 1.31, P = 0.56; 102 versus 106; z = −2.24, P = 0.11; 102 versus 108; z = −0.99, P = 0.75; 104 versus 108; z = 0.56, P = 0.94. Data are mean ± s.e.m

Source Data.

Extended Data Fig. 7 LPS-based phage resistance also affects in vivo virulence.

Time until death (given as median ± one standard error) for G. mellonella larvae infected with PA14 clones that evolved phage resistance by LPS modification, compared to the phage-sensitive ancestral (n = 209 biologically independent samples). Cox proportional hazards model with Tukey contrasts: sensitive (ancestral) versus LPS; z = 4.81, P = 1.49 × 10−6. overall model fit; LRT3 = 44.94, P = 1 × 10−9

Source Data.

Supplementary information

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alseth, E.O., Pursey, E., Luján, A.M. et al. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature 574, 549–552 (2019). https://doi.org/10.1038/s41586-019-1662-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-019-1662-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology