Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Continuous evolution of base editors with expanded target compatibility and improved activity

A Publisher Correction to this article was published on 12 August 2019

This article has been updated

Abstract

Base editors use DNA-modifying enzymes targeted with a catalytically impaired CRISPR protein to precisely install point mutations. Here, we develop phage-assisted continuous evolution of base editors (BE–PACE) to improve their editing efficiency and target sequence compatibility. We used BE–PACE to evolve cytosine base editors (CBEs) that overcome target sequence context constraints of canonical CBEs. One evolved CBE, evoAPOBEC1-BE4max, is up to 26-fold more efficient at editing cytosine in the GC context, a disfavored context for wild-type APOBEC1 deaminase, while maintaining efficient editing in all other sequence contexts tested. Another evolved deaminase, evoFERNY, is 29% smaller than APOBEC1 and edits efficiently in all tested sequence contexts. We also evolved a CBE based on CDA1 deaminase with much higher editing efficiency at difficult target sites. Finally, we used data from evolved CBEs to illuminate the relationship between deaminase activity, base editing efficiency, editing window width and byproduct formation. These findings establish a system for rapid evolution of base editors and inform their use and improvement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of base editing and PACE.
Fig. 2: Design and validation of BE–PACE.
Fig. 3: Design and validation of the split intein BE–PACE selection.
Fig. 4: BE–PACE of APOBEC1, FERNY and CDA1, and characterization of evolved deaminase CBEs in mammalian cells.
Fig. 5: Base editing performance of evolved deaminase CBEs, all codon-optimized in the BE4max architecture, in mammalian cells.
Fig. 6: Performance of evolved CBEs on disease-relevant target sites.

Similar content being viewed by others

Data availability

Key plasmids from this work will be available from Addgene (depositor, D.R.L.) and other plasmids are available upon request. All unmodified reads for sequencing-based data in the manuscript are available from the NCBI Sequence Read Archive, accession number PRJNA511456. Figures 4b, 5 and 6, Supplementary Table 3 and Supplementary Figs. 814, 16 and 1822 are based on processing of sequencing data. Protein sequences used for Supplementary Fig. 17 are supplied as Supplementary Data 1.

Change history

References

  1. Cornu, T. I., Mussolino, C. & Cathomen, T. Refining strategies to translate genome editing to the clinic. Nat. Med. 23, 415–423 (2017).

    Google Scholar 

  2. Webber, B.R. et al. Multiplex human T cell engineering without double-strand break induction using the Cas9 base editor system. Blood 132, 3495 (2018).

    Google Scholar 

  3. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    Google Scholar 

  4. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Google Scholar 

  5. Komor, A. C. et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T: base editors with higher efficiency and product purity. Sci. Adv. 3, eaao4774 (2017).

    Google Scholar 

  6. Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotech. 36, 843–846 (2018).

    Google Scholar 

  7. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729–aaf8729 (2016).

    Google Scholar 

  8. Zafra, M. P. et al. Optimized base editors enable efficient editing in cells, organoids and mice. Nat. Biotech. 36, 888 (2018).

    Google Scholar 

  9. Gehrke, J. M. et al. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat. Biotech. 36, 977–982 (2018).

    Google Scholar 

  10. Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotech. 35, 371–376 (2017).

    Google Scholar 

  11. Najm, F. J. et al. Orthologous CRISPR–Cas9 enzymes for combinatorial genetic screens. Nat. Biotech. 36, 179–189 (2018).

    Google Scholar 

  12. Badran, A. H. & Liu, D. R. In vivo continuous directed evolution. Curr. Opin. Chem. Biol. 24, 1–10 (2015).

    Google Scholar 

  13. Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011).

    Google Scholar 

  14. Badran, A. H. et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature 533, 58–63 (2016).

    Google Scholar 

  15. Bryson, D. I. et al. Continuous directed evolution of aminoacyl-tRNA synthetases. Nat. Chem. Bio. 13, 1253–1260 (2017).

    Google Scholar 

  16. Carlson, J. C., Badran, A. H., Guggiana-Nilo, D. A. & Liu, D. R. Negative selection and stringency modulation in phage-assisted continuous evolution. Nat. Chem. Bio. 10, 216–222 (2014).

    Google Scholar 

  17. Dickinson, B. C., Leconte, A. M., Allen, B., Esvelt, K. M. & Liu, D. R. Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution. Proc. Natl Acad. Sci. USA 110, 9007–9012 (2013).

    Google Scholar 

  18. Dickinson, B. C., Packer, M. S., Badran, A. H. & Liu, D. R. A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations. Nat. Commun. 5, 5352 (2014).

    Google Scholar 

  19. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

    Google Scholar 

  20. Hubbard, B. P. et al. Continuous directed evolution of DNA-binding proteins to improve TALEN specificity. Nat. Chem. Bio. 12, 939–942 (2015).

    Google Scholar 

  21. Leconte, A. M. et al. A population-based experimental model for protein evolution: effects of mutation rate and selection stringency on evolutionary outcomes. Biochemistry 52, 1490–1499 (2013).

    Google Scholar 

  22. Packer, M. S., Rees, H. A. & Liu, D. R. Phage-assisted continuous evolution of proteases with altered substrate specificity. Nat. Commun. 8, 956 (2017).

    Google Scholar 

  23. Wang, T., Badran, A. H., Huang, T. P. & Liu, D. R. Continuous directed evolution of proteins with improved soluble expression. Nat. Chem. Biol. 14, 972–980 (2018).

    Google Scholar 

  24. Roth, T., Woolston, B., Stephanopoulos, G. & Liu, D. R. Phage-assisted evolution of Bacillus methanolicus methanol dehydrogenase 2. ACS Synth. Biol. 8, 796–806 (2019).

    Google Scholar 

  25. Raindlová, V. et al. Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases. Nucleic Acids Res. 44, 3000–3012 (2016).

    Google Scholar 

  26. Karzai, A. W., Roche, E. D. & Sauer, R. T. The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat. Struct. Biol. 7, 449–455 (2000).

    Google Scholar 

  27. Lykke-Andersen, J. & Christiansen, J. The C-terminal carboxy group of T7 RNA polymerase ensures efficient magnesium ion-dependent catalysis. Nucleic Acids Res. 26, 5630–5635 (1998).

    Google Scholar 

  28. Rakonjac, J., Bennett, N. J., Spagnuolo, J., Gagic, D. & Russel, M. Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr. Iss. Mol. Biol. 13, 51–76 (2011).

    Google Scholar 

  29. Zinder, N. D. & Boeke, J. D. The filamentous phage (Ff) as vectors for recombinant DNA–a review. Gene 19, 1–10 (1982).

    Google Scholar 

  30. Iwai, H., Züger, S., Jin, J. & Tam, P.-H. Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett. 580, 1853–1858 (2006).

    Google Scholar 

  31. Beale, R. C. L. et al. Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. J. Mol. Biol. 337, 585–596 (2004).

    Google Scholar 

  32. Navaratnam, N. et al. Escherichia coli cytidine deaminase provides a molecular model for ApoB RNA editing and a mechanism for RNA substrate recognition. J. Mol. Biol. 275, 695–714 (1998).

    Google Scholar 

  33. Salter, J. D., Bennett, R. P. & Smith, H. C. The APOBEC protein family: united by structure, divergent in function. Trends Biochem. Sci. 41, 578–594 (2016).

    Google Scholar 

  34. Kohli, R. M. et al. A portable hot spot recognition loop transfers sequence preferences from APOBEC family members to activation-induced cytidine deaminase. J. Biol. Chem. 284, 22898–22904 (2009).

    Google Scholar 

  35. Lada, A. G. et al. Mutator effects and mutation signatures of editing deaminases produced in bacteria and yeast. Biochemistry 76, 131–146 (2011).

    Google Scholar 

  36. St Martin, A. et al. A fluorescent reporter for quantification and enrichment of DNA editing by APOBEC–Cas9 or cleavage by Cas9 in living cells. Nucleic Acids Res. 9, 229–210 (2018).

    Google Scholar 

  37. Wang, X. et al. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat. Biotech. 36, 946–949 (2018).

    Google Scholar 

  38. Manji, S. S. M., Miller, K. A., Williams, L. H. & Dahl, H.-H. M. Identification of three novel hearing loss mouse strains with mutations in the Tmc1 gene. The Am. J. Pathol. 180, 1560–1569 (2012).

    Google Scholar 

  39. Liu, C.-C., Liu, C.-C., Kanekiyo, T., Xu, H. & Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nature Rev. Neurol. 9, 106–118 (2013).

    Google Scholar 

  40. Nishimasu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 337, eaas9129–eaas9128 (2018).

  41. Rigoli, L., Bramanti, P., Di Bella, C. & De Luca, F. Genetic and clinical aspects of Wolfram syndrome 1, a severe neurodegenerative disease. Pediatric Res. 83, 921–929 (2018).

    Google Scholar 

  42. Hardy, C. et al. Clinical and molecular genetic analysis of 19 Wolfram syndrome kindreds demonstrating a wide spectrum of mutations in WFS1. Am. J. Hum. Genet. 65, 1279–1290 (1999).

    Google Scholar 

  43. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Google Scholar 

  44. Rees, H. A. et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. 8, 15790 (2017).

    Google Scholar 

  45. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotech. 33, 187–197 (2014).

    Google Scholar 

  46. Scheben, A. & Edwards, D. Towards a more predictable plant breeding pipeline with CRISPR/Cas-induced allelic series to optimize quantitative and qualitative traits. Curr. Opin. Plant Biol. 45, 218–225 (2018).

    Google Scholar 

  47. Urnov, F. D., Ronald, P. C. & biotechnology, D. C. N. A call for science-based review of the European court’s decision on gene-edited crops. Nat. Biotechnol. 36, 800–802 (2018). & 2018.

    Google Scholar 

  48. Badran, A. H. & Liu, D. R. Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat. Commun. 6, 8425 (2015).

    Google Scholar 

  49. Cavaleiro, A. M., Kim, S. H., Seppälä, S., Nielsen, M. T. & Nørholm, M. H. H. Accurate DNA assembly and genome engineering with optimized uracil excision cloning. ACS Synth. Biol. 4, 1042–1046 (2015).

    Google Scholar 

  50. Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PloS ONE 3, e3647–e3647 (2008).

    Google Scholar 

  51. Lee, M. E., DeLoache, W. C., Cervantes, B. & Dueber, J. E. A. A highly characterized yeast toolkit for modular, multipart assembly. ACS Synth. Biol. 4, 975–986 (2015).

    Google Scholar 

  52. Potapov, V. et al. Comprehensive profiling of four base overhang ligation fidelity by T4 DNA ligase and application to DNA assembly. ACS Synth. Biol. 7, 2665–2674 (2018).

    Google Scholar 

  53. Ringquist, S. et al. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol. Microbiol. 6, 1219–1229 (1992).

    Google Scholar 

  54. Davis, J. H., Rubin, A. J. & Sauer, R. T. Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res. 39, 1131–1141 (2011).

    Google Scholar 

  55. Salis, H. M. The Ribosome Binding Site calculator. Method. Enzym. 498, 19–42 (2011).

    Google Scholar 

  56. Cui, L. et al. A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9. Nat. Commun. 9, 1912 (2018).

    Google Scholar 

  57. Chung, C. T. & Miller, R. H. Preparation and storage of competent Escherichia coli cells. Meth. Enzym. 218, 621–627 (1993).

    Google Scholar 

  58. Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotech. 37, 224–226 (2019).

    Google Scholar 

  59. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Google Scholar 

  60. Ashkenazy, H. et al. FastML: a web server for probabilistic reconstruction of ancestral sequences. Nucleic Acids Res. 40, W580–W584 (2012).

    Google Scholar 

  61. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Google Scholar 

  62. Notredame, C., Higgins, D. G. & Heringa, J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).

    Google Scholar 

  63. Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010).

    Google Scholar 

  64. Yang, J. & Zhang, Y. Protein structure and function prediction using I-TASSER. Curr. Protoc. Bioinformatics 52, 5.8.1–5.8.15 (2015).

    Google Scholar 

Download references

Acknowledgements

We thank B. Fu and C. Canavan for assistance with plasmid construction and assays; H. Rees, T. Wang, J. Bessen, A. Badran and P. Lichtor for helpful discussion; K. Clement for CRISPResso2 support; and A. Hamidi for help editing the manuscript. This work was supported by US NIH grant nos. U01 AI142756, RM1 HG009490, R01 EB022376 and R35 GM118062, St. Jude Collaborative Research Consortium, DARPA HR0011-17-2-0049, the Ono Pharma Foundation and HHMI. L.W.K. is an NSF Graduate Research Fellow and was supported by NIH Training Grant no. T32 GM095450. O.S.O. and J.R.H. were supported by NIH DC013521. C.Z. was supported by the Harvard College Research Program. C.W. is the Marion Abbe Fellow of the Damon Runyon Cancer Research Foundation (DRG-2343-18).

Author information

Authors and Affiliations

Authors

Contributions

B.W.T. designed the research, designed and constructed plasmids, and performed PACE and bacterial experiments. L.W.K. and J.M.L. designed and performed HEK cell experiments and analyzed data. J.M.L. designed and performed APOE editing experiments. W-H.Y. designed and performed baringo editing experiments. C.Z. constructed plasmids and performed bacterial experiments for selection development. G.A.N. designed and constructed plasmids for the HEK cell experiment for WFS1 editing. C.W. designed and performed ancestral sequence reconstruction. M.B., O.S-O. and J.R.H. contributed baringo mouse cells. D.R.L. designed and supervised the research. B.W.T., L.W.K. and D.R.L. wrote the manuscript. All authors contributed to editing the manuscript.

Corresponding author

Correspondence to David R. Liu.

Ethics declarations

Competing interests

D.R.L. is a consultant and co-founder of Beam Therapeutics, Editas Medicine and Pairwise Plants, companies that use genome editing. D.R.L., B.W.T. and C.W. have filed patent applications on aspects of this work.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Complete Integrated SI

Supplementary Discussion 1–6, Supplementary Tables 1–2 and 4–6 and Supplementary Figs. 1–22

Reporting Summary

Supplementary Table 3

Compiled editing data/CRISPResso output tabulated for mammalian cell editing at C bases with measurable edits from any construct

Supplementary Data 1

Structure-guided alignment of APOBEC sequences used in Supplementary Fig. 17 in FASTA format

Supplementary Data 2

Homology model of APOBEC1

Supplementary Data 3

Homology model of FERNY

Supplementary Data 4

Homology model of CDA1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thuronyi, B.W., Koblan, L.W., Levy, J.M. et al. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol 37, 1070–1079 (2019). https://doi.org/10.1038/s41587-019-0193-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-019-0193-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing