Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide mutant profiling predicts the mechanism of a Lipid II binding antibiotic

This article has been updated

Abstract

Identifying targets of antibacterial compounds remains a challenging step in the development of antibiotics. We have developed a two-pronged functional genomics approach to predict mechanism of action that uses mutant fitness data from antibiotic-treated transposon libraries containing both upregulation and inactivation mutants. We treated a Staphylococcus aureus transposon library containing 690,000 unique insertions with 32 antibiotics. Upregulation signatures identified from directional biases in insertions revealed known molecular targets and resistance mechanisms for the majority of these. Because single-gene upregulation does not always confer resistance, we used a complementary machine-learning approach to predict the mechanism from inactivation mutant fitness profiles. This approach suggested the cell wall precursor Lipid II as the molecular target of the lysocins, a mechanism we have confirmed. We conclude that docking to membrane-anchored Lipid II precedes the selective bacteriolysis that distinguishes these lytic natural products, showing the utility of our approach for nominating the antibiotic mechanism of action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic showing known sites of action of antibiotics used to treat the S. aureus transposon library.
Fig. 2: Genes upregulated by transposon insertion reveal mechanisms of resistance for the tested antibiotics.
Fig. 3: Supervised machine learning predicts mechanism of action of antibiotics.
Fig. 4: The lysocins.
Fig. 5: Lysocin E binds to Lipid II.

Similar content being viewed by others

Change history

  • 23 April 2018

    In the version of this article originally published, the link for the Supplementary Note in the Supplementary Information section incorrectly led to the file for the Supplementary Text and Figures. The error has been corrected in the HTML version of this article.

References

  1. Antibiotic resistance threats in the United States, 2013. (Centers for Disease Control and Prevention, Atlanta, GA, USA, 2013).

  2. Fischbach, M. A. & Walsh, C. T. Antibiotics for emerging pathogens. Science 325, 1089–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Eustice, D. C., Feldman, P. A. & Slee, A. M. The mechanism of action of DuP 721, a new antibacterial agent: effects on macromolecular synthesis. Biochem. Biophys. Res. Commun. 150, 965–971 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Nonejuie, P., Burkart, M., Pogliano, K. & Pogliano, J. Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. Proc. Natl Acad. Sci. USA 110, 16169–16174 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Donald, R. G. et al. A Staphylococcus aureus fitness test platform for mechanism-based profiling of antibacterial compounds. Chem. Biol. 16, 826–836 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Li, X. et al. Multicopy suppressors for novel antibacterial compounds reveal targets and drug efflux susceptibility. Chem. Biol. 11, 1423–1430 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. van Opijnen, T., Bodi, K. L. & Camilli, A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat. Methods 6, 767–772 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goodman, A. L., Wu, M. & Gordon, J. I. Identifying microbial fitness determinants by insertion sequencing using genome-wide transposon mutant libraries. Nat. Protoc. 6, 1969–1980 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pritchard, J. R. et al. ARTIST: high-resolution genome-wide assessment of fitness using transposon-insertion sequencing. PLoS Genet. 10, e1004782 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Santiago, M. et al. A new platform for ultra-high density Staphylococcus aureus transposon libraries. BMC Genomics 16, 252 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang, H., Claveau, D., Vaillancourt, J. P., Roemer, T. & Meredith, T. C. High-frequency transposition for determining antibacterial mode of action. Nat. Chem. Biol. 7, 720–729 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Rajagopal, M. et al. Multidrug intrinsic resistance factors in Staphylococcus aureus identified by profiling fitness within high-diversity transposon libraries. MBio 7, e00950–16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Murray, J. L., Kwon, T., Marcotte, E. M. & Whiteley, M. Intrinsic antimicrobial resistance determinants in the superbug Pseudomonas aeruginosa. MBio 6, e01603–e01615 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walsh, C. in Antibiotics: Actions, Origins, Resistance 23–70 (ASM Press, 2003).

  16. Siewert, G. & Strominger, J. L. Bacitracin: an inhibitor of the dephosphorylation of lipid pyrophosphate, an intermediate in the biosynthesis of the peptidoglycan of bacterial cell walls. Proc. Natl. Acad. Sci. USA 57, 767–773 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matano, L. M. et al. Antibiotic that inhibits the ATPase activity of an ATP-binding cassette transporter by binding to a remote extracellular site. J. Am. Chem. Soc. 139, 10597–10600 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Swoboda, J. G. et al. Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus. ACS Chem. Biol. 4, 875–883 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huber, J. et al. Chemical genetic identification of peptidoglycan inhibitors potentiating carbapenem activity against methicillin-resistant Staphylococcus aureus. Chem. Biol. 16, 837–848 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Wright, H. T. & Reynolds, K. A. Antibacterial targets in fatty acid biosynthesis. Curr. Opin. Microbiol. 10, 447–453 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kahan, F. M., Kahan, J. S., Cassidy, P. J. & Kropp, H. The mechanism of action of fosfomycin (phosphonomycin). Ann. NY Acad. Sci. 235, 364–386 (1974).

    Article  CAS  PubMed  Google Scholar 

  22. Sham, L. T. et al. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345, 220–222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Payne, D. J. et al. Discovery of a novel and potent class of FabI-directed antibacterial agents. Antimicrob. Agents Chemother. 46, 3118–3124 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Neyfakh, A. A., Borsch, C. M. & Kaatz, G. W. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrob. Agents Chemother. 37, 128–129 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cao, M., Bernat, B. A., Wang, Z., Armstrong, R. N. & Helmann, J. D. FosB, a cysteine-dependent fosfomycin resistance protein under the control of ςW, an extracytoplasmic-function ς factor in Bacillus subtilis. J. Bacteriol. 183, 2380–2383 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. El Ghachi, M., Bouhss, A., Blanot, D. & Mengin-Lecreulx, D. The bacA gene of Escherichia coli encodes an undecaprenyl pyrophosphate phosphatase activity. J. Biol. Chem. 279, 30106–30113 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Gardete, S., Wu, S. W., Gill, S. & Tomasz, A. Role of VraSR in antibiotic resistance and antibiotic-induced stress response in Staphylococcus aureus. Antimicrob. Agents Chemother. 50, 3424–3434 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miller, W. R., Bayer, A. S. & Arias, C. A. Mechanism of action and resistance to daptomycin in Staphylococcus aureus and Enterococci. Cold Spring Harb. Perspect. Med. 6, a026997 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pogliano, J., Pogliano, N. & Silverman, J. A. Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J. Bacteriol. 194, 4494–4504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peschel, A. et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J. Exp. Med. 193, 1067–1076 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hines, K. M. et al. Characterization of the mechanisms of daptomycin resistance among Gram-positive bacterial pathogens by multidimensional lipidomics. MSphere 2, e00492–17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hamamoto, H. et al. Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. Nat. Chem. Biol. 11, 127–133 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Sekimizu, K., Hamamoto, H. & Murakami, K. Novel cyclic peptide compound, method for production same, anti-infective agent, antibiotic-containing fraction, antibiotic, method for producing antibiotic, antibiotic-producing microorganism, and antibiotic produced by same. European Patent EP2578597 A1 (2013).

  34. Harada, K. et al. A method using LC/MS for determination of absolute configuration of constituent amino acids in peptide—advanced Marfey’s method. Tetrahedr. Lett. 36, 1515–1518 (1995).

    Article  CAS  Google Scholar 

  35. Bonnet, M., Rafi, M. M., Chikindas, M. L. & Montville, T. J. Bioenergetic mechanism for nisin resistance, induced by the acid tolerance response of Listeria monocytogenes. Appl. Environ. Microbiol. 72, 2556–2563 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cao, S., Huseby, D. L., Brandis, G. & Hughes, D. Alternative evolutionary pathways for drug-resistant small colony variant mutants in Staphylococcus aureus. MBio 8, e00358–17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Proctor, R. A. et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat. Rev. Microbiol. 4, 295–305 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Qiao, Y. et al. Detection of lipid-linked peptidoglycan precursors by exploiting an unexpected transpeptidase reaction. J. Am. Chem. Soc. 136, 14678–14681 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rebets, Y. et al. Moenomycin resistance mutations in Staphylococcus aureus reduce peptidoglycan chain length and cause aberrant cell division. ACS Chem. Biol. 9, 459–467 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Qiao, Y. et al. Lipid II overproduction allows direct assay of transpeptidase inhibition by β-lactams. Nat. Chem. Biol. 13, 793–798 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Srisuknimit, V., Qiao, Y., Schaefer, K., Kahne, D. & Walker, S. Peptidoglycan cross-linking preferences of Staphylococcus aureus penicillin-binding proteins have implications for treating MRSA infections. J. Am. Chem. Soc. 139, 9791–9794 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, W. et al. The mechanism of action of lysobactin. J. Am. Chem. Soc. 138, 100–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Hu, Y., Helm, J. S., Chen, L., Ye, X. Y. & Walker, S. Ramoplanin inhibits bacterial transglycosylases by binding as a dimer to lipid II. J. Am. Chem. Soc. 125, 8736–8737 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Welsh, M. A. et al. Identification of a functionally unique family of penicillin-binding proteins. J. Am. Chem. Soc. 139, 17727–17730 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pasquina, L. et al. A synthetic lethal approach for compound and target identification in Staphylococcus aureus. Nat. Chem. Biol. 12, 40–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Wildenhain, J. et al. Prediction of synergism from chemical-genetic interactions by machine learning. Cell Syst. 1, 383–395 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schneider, T. & Sahl, H. G. Lipid II and other bactoprenol-bound cell wall precursors as drug targets. Curr. Opin. Investig. Drugs 11, 157–164 (2010).

    CAS  PubMed  Google Scholar 

  48. Breukink, E. & de Kruijff, B. Lipid II as a target for antibiotics. Nat. Rev. Drug Discov. 5, 321–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Schaefer, K., Matano, L. M., Qiao, Y., Kahne, D. & Walker, S. In vitro reconstitution demonstrates the cell wall ligase activity of LCP proteins. Nat. Chem. Biol. 13, 396–401 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goecks, J., Nekrutenko, A. & Taylor, J. & The Galaxy Team. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Blankenberg, D. et al. Galaxy: a web-based genome analysis tool for experimentalists. Curr. Protoc. Mol. Biol. Chapter 19, Unit 19.10 11–21 (2010).

  52. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  53. Fey, P. D. et al. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio 4, e00537–12 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liew, A. T. et al. A simple plasmid-based system that allows rapid generation of tightly controlled gene expression in Staphylococcus aureus. Microbiology 157, 666–676 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Etzbach, L., Plaza, A., Garcia, R., Baumann, S. & Müller, R. Cystomanamides: structure and biosynthetic pathway of a family of glycosylated lipopeptides from myxobacteria. Org. Lett. 16, 2414–2417 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Baumann, S. et al. Cystobactamids: myxobacterial topoisomerase inhibitors exhibiting potent antibacterial activity. Angew. Chem. Int. Edn Engl. 53, 14605–14609 (2014).

    Article  CAS  Google Scholar 

  57. Nielsen, E. I. et al. Semimechanistic pharmacokinetic/pharmacodynamic model for assessment of activity of antibacterial agents from time-kill curve experiments. Antimicrob. Agents Chemother. 51, 128–136 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Wakeman, C. A. et al. Menaquinone biosynthesis potentiates haem toxicity in Staphylococcus aureus. Mol. Microbiol. 86, 1376–1392 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Varney, K. M. et al. Turning defense into offense: defensin mimetics as novel antibiotics targeting lipid II. PLoS Pathog. 9, e1003732 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge fellowship support from the NIH for M.S. (F31AI114131) and from the NSF for T.D. (DGE1144152). The work was supported by NIH grants (P01 AI083214, U19 AI109764, and R01 GM076710). We thank C. Bader and H. Steinmetz at Helmholtz Center for Infection Research (HZI) for help with compound isolation and structure analysis, N. Zaburanyi at HZI for genome analysis of the producer strain, V. Schmitt at HZI for cultivation, fermentation, and DNA isolation, M. Bischoff Saarland University Hospital for S. aureus isolates, and E. Skaar at Vanderbilt University Medical Center for generously sharing the ΔmenB and ΔmenB Newman strains.

Author information

Authors and Affiliations

Authors

Contributions

T.C.M. and S.W. designed and supervised the research. M.S., W.L., M.R., T.D., and T.C.M. prepared samples for transposon sequencing. M.S. and K.A.C. designed and implemented computational methods for identifying upregulated genes and for predicting antibiotic mechanism of action. M.S. validated upregulated genes that confer daptomycin resistance; W.L. performed all other upregulation validation experiments. R.M. and A.A.F. isolated and determined the structure of the lysocin compounds. W.L. and F.H. obtained lysocin MICs. W.L. performed all validation experiments on lysocin compounds, with assistance from V.S. for Lipid II preparation. All authors contributed to manuscript preparation.

Corresponding authors

Correspondence to Rolf Müller, Timothy C. Meredith or Suzanne Walker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–7, Supplementary Figures 1–13

Reporting Summary

Supplementary Data

The data set contains comma-separated file with the fitness values for each gene under each antibiotic treatment, along with files tabulating the gene-by-gene sequencing read counts for the antibiotic-treated and untreated samples

Supplementary Note

Experimental procedures for NMR analysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santiago, M., Lee, W., Fayad, A.A. et al. Genome-wide mutant profiling predicts the mechanism of a Lipid II binding antibiotic. Nat Chem Biol 14, 601–608 (2018). https://doi.org/10.1038/s41589-018-0041-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0041-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing