Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A neural mechanism for deprivation state-specific expression of relevant memories in Drosophila

Abstract

Motivational states modulate how animals value sensory stimuli and engage in goal-directed behaviors. The motivational states of thirst and hunger are represented in the brain by shared and unique neuromodulatory systems. However, it is unclear how such systems interact to coordinate the expression of appropriate state-specific behavior. We show that the activity of two brain neurons expressing leucokinin neuropeptide is elevated in thirsty and hungry flies, and that leucokinin release is necessary for state-dependent expression of water- and sugar-seeking memories. Leucokinin inhibits two types of mushroom-body-innervating dopaminergic neurons (DANs) to promote thirst-specific water memory expression, whereas it activates other mushroom-body-innervating DANs to facilitate hunger-dependent sugar memory expression. Selection of hunger- or thirst-appropriate memory emerges from competition between leucokinin and other neuromodulatory hunger signals at the level of the DANs. Therefore, coordinated modulation of the dopaminergic system allows flies to prioritize the expression of the relevant state-dependent motivated behavior.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thirst gates water memory expression.
Fig. 2: Leucokinin promotes thirst-dependent water memory expression.
Fig. 3: Leucokinin controls water memory expression by inhibiting two classes of dopaminergic neurons.
Fig. 4: Leucokinin regulates hunger-dependent sugar memory expression via other dopaminergic neurons.
Fig. 5: Dopaminergic neurons control state-appropriate memory expression by integrating leucokinin and other hunger signals.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available from the corresponding author upon request.

References

  1. Toates, F. Motivational systems. (Cambridge University Press, 1986).

  2. Burnett, C. J. et al. Hunger-driven motivational state competition. Neuron 92, 187–201 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lin, S., Senapati, B. & Tsao, C.-H. Neural basis of hunger-driven behaviour in Drosophila. Open Biol. 9, 180259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jourjine, N., Mullaney, B. C., Mann, K. & Scott, K. Coupled sensing of hunger and thirst signals balances sugar and water consumption. Cell 166, 855–866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lin, S. et al. Neural correlates of water reward in thirsty Drosophila. Nat. Neurosci. 17, 1536–1542 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shyu, W., Chiu, T., Chiang, M. & Cheng, Y. Neural circuits for long-term water-reward memory processing in thirsty Drosophila. Nat. Commun. 8, 1–13 (2017).

    Article  CAS  Google Scholar 

  7. Krashes, M. J. et al. A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell 139, 416–427 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dus, M. et al. Nutrient sensor in the brain directs the action of the brain-gut axis in Drosophila. Neuron 87, 139–151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Inagaki, H. K., Panse, K. M. & Anderson, D. J. Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila. Neuron 84, 806–820 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Loh, K. et al. Insulin controls food intake and energy balance via NPY neurons. Mol. Metab. 6, 574–584 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, K.-S., You, K.-H., Choo, J.-K., Han, Y.-M. & Yu, K. Drosophila short neuropeptide F regulates food intake and body size. J. Biol. Chem. 279, 50781–50789 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Pool, A.-H. & Scott, K. Feeding regulation in Drosophila. Curr. Opin. Neurobiol. 29, 57–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Rajan, A. & Perrimon, N. Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 151, 123–137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Root, C. M., Ko, K. I., Jafari, A. & Wang, J. W. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145, 133–144 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun, J. et al. Drosophila FIT is a protein-specific satiety hormone essential for feeding control. Nat. Commun. 8, 14161 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu, Q., Zhao, Z. & Shen, P. Regulation of aversion to noxious food by Drosophila neuropeptide Y- and insulin-like systems. Nat. Neurosci. 8, 1350–1355 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Yu, Y. et al. Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila. Elife 5, 1–19 (2016).

    Google Scholar 

  18. Gáliková, M., Dircksen, H. & Nässel, D. R. The thirsty fly: Ion transport peptide (ITP) is a novel endocrine regulator of water homeostasis in Drosophila. PLoS Genet. 14, e1007618 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Baines, R. A., Uhler, J. P., Thompson, A., Sweeney, S. T. & Bate, M. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21, 1523–1531 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johns, D. C., Marx, R., Mains, R. E., O’Rourke, B. & Marbán, E. Inducible genetic suppression of neuronal excitability. J. Neurosci. 19, 1691–1697 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McGuire, S. E., Mao, Z. & Davis, R. L. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci. STKE 2004, pl6 (2004).

    Article  PubMed  Google Scholar 

  22. Hamada, F. N. et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217–220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Haro, M. et al. Detailed analysis of leucokinin-expressing neurons and their candidate functions in the Drosophila nervous system. Cell Tissue Res. 339, 321–336 (2010).

    Article  PubMed  Google Scholar 

  24. Zandawala, M., Marley, R., Davies, S. A. & Nässel, D. R. Characterization of a set of abdominal neuroendocrine cells that regulate stress physiology using colocalized diuretic peptides in Drosophila. Cell. Mol. Life Sci. 75, 1099–1115 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Zandawala, M. et al. Modulation of Drosophila post-feeding physiology and behavior by the neuropeptide leucokinin. PLoS Genet. 14, e1007767 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao, X. J. et al. A transcriptional reporter of intracellular Ca2+ in Drosophila. Nat. Neurosci. 18, 917–925 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cavey, M., Collins, B., Bertet, C. & Blau, J. Circadian rhythms in neuronal activity propagate through output circuits. Nat. Neurosci. 19, 587–595 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Herrero, P., Magariños, M., Torroja, L. & Canal, I. Neurosecretory identity conferred by the apterous gene: lateral horn leucokinin neurons in Drosophila. J. Comp. Neurol. 457, 123–132 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Mao, Z. & Davis, R. L. Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front. Neural Circuits 3, 5 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Aso, Y. et al. The neuronal architecture of the mushroom body provides a logic for associative learning. Elife 3, e04577 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Al-Anzi, B. et al. The leucokinin pathway and its neurons regulate meal size in Drosophila. Curr. Biol. 20, 969–78 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, Y., Luo, J., Carlsson, M. A. & Nässel, D. R. Serotonin and insulin-like peptides modulate leucokinin-producing neurons that affect feeding and water homeostasis in Drosophila. J. Comp. Neurol. 523, 1840–1863 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Huetteroth, W. et al. Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila. Curr. Biol. 25, 751–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamagata, N. et al. Distinct dopamine neurons mediate reward signals for short- and long-term memories. Proc. Natl Acad. Sci. USA 112, 578–583 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Yurgel, M. E. et al. A single pair of leucokinin neurons are modulated by feeding state and regulate sleep-metabolism interactions. PLoS Biol. 17, e2006409 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jenett, A. et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2, 991–1001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Owald, D. et al. Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila. Neuron 86, 417–427 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Croset, V., Treiber, C. D. & Waddell, S. Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. Elife 7, 1–31 (2018).

    Article  Google Scholar 

  41. Davie, K. et al. A single-cell transcriptome atlas of the aging Drosophila brain. Cell 174, 982–998.e20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Albin, S. D. et al. A subset of serotonergic neurons evokes hunger in adult Drosophila. Curr. Biol. 25, 2435–2440 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Tsao, C.-H., Chen, C.-C., Lin, C.-H., Yang, H.-Y. & Lin, S. Drosophila mushroom bodies integrate hunger and satiety signals to control innate food-seeking behavior. Elife 7, e35264 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cohn, R., Morantte, I. & Ruta, V. Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell 163, 1742–1755 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. de Castro, J. M. A microregulatory analysis of spontaneous fluid intake by humans: evidence that the amount of liquid ingested and its timing is mainly governed by feeding. Physiol. Behav. 43, 705–714 (1988).

    Article  PubMed  Google Scholar 

  46. Kissileff, H. R. Food-associated drinking in the rat. J. Comp. Physiol. Psychol. 67, 284–300 (1969).

    Article  CAS  PubMed  Google Scholar 

  47. Fitzsimons, T. J. & Le Magnen, J. Eating as a regulatory control of drinking in the rat. J. Comp. Physiol. Psychol. 67, 273–283 (1969).

    Article  CAS  PubMed  Google Scholar 

  48. Perisse, E. et al. Aversive learning and appetitive motivation toggle feed-forward inhibition in the Drosophila mushroom body. Neuron 90, 1086–1099 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hescheler, J. & Schultz, G. G-proteins involved in the calcium channel signalling system. Curr. Opin. Neurobiol. 3, 360–367 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Wise, R. A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Tully, T. & Quinn, W. G. Classical conditioning and retention in normal and mutant Drosophila melanogaster. J. Comp. Physiol. A. 157, 263–277 (1985).

    Article  CAS  PubMed  Google Scholar 

  52. Pai, T.-P. et al. Drosophila ORB protein in two mushroom body output neurons is necessary for long-term memory formation. Proc. Natl Acad. Sci. USA 110, 7898–7903 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ni, J.-Q. et al. A Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics 182, 1089–1100 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Murphy, K. R. et al. Postprandial sleep mechanics in Drosophila. Elife 5, 1–19 (2016).

    Google Scholar 

  55. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K. & Davis, R. L. Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302, 1765–1768 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Perisse, E. et al. Different kenyon cell populations drive learned approach and avoidance in Drosophila. Neuron 79, 945–956 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Friggi-Grelin, F. et al. Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J. Neurobiol. 54, 618–627 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Li, H., Chaney, S., Roberts, I. J., Forte, M. & Hirsh, J. Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr. Biol. 10, 211–214 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, C. et al. A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature 488, 512–516 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Knecht, Z. A. et al. Distinct combinations of variant ionotropic glutamate receptors mediate thermosensation and hygrosensation in Drosophila. Elife 5, 1–35 (2016).

    Article  Google Scholar 

  63. Knecht, Z. A. et al. Ionotropic receptor-dependent moist and dry cells control hygrosensation in Drosophila. Elife 6, 1–11 (2017).

    Article  Google Scholar 

  64. Cachero, S., Ostrovsky, A. D., Yu, J. Y., Dickson, B. J. & Jefferis, G. S. X. E. Sexual dimorphism in the fly brain. Curr. Biol. 20, 1589–1601 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Felsenberg, J. et al. Integration of parallel opposing memories underlies memory extinction. Cell 175, 709–722.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Boto, T., Stahl, A., Zhang, X., Louis, T. & Tomchik, S. M. Independent contributions of discrete dopaminergic circuits to cellular plasticity, memory strength, and valence in Drosophila. Cell Rep. 27, 2014–2021.e2 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Cognigni (University of Oxford, UK) for experiments leading to those in Fig. 5. We thank G. Wright (University of Oxford, UK), J. Felsenberg (Friedrich Miescher Institute, Switzerland), E. Perisse (University of Montpellier, France), G. Das (National Centre for Cell Science, India), and V. Croset (University of Oxford, UK) for comments on the manuscript. We thank A. -S. Chiang (National Tsing Hua University, Taiwan), G. Rubin (Janelia Farm Research Campus, USA), Y. Aso (Janelia Farm Research Campus, USA) and FlyLight (Janelia Farm Research Campus, USA), the Bloomington Drosophila Stock Center, Vienna Drosophila RNAi center, Kyoto Stock Center, Harvard TRiP RNAi stock center, and Taiwan Fly Core for fly stocks. C.-L.W. is funded by the Ministry of Science and Technology, Taiwan (106-2311-B-182-004-MY3) and Chang Gung Memorial Hospital, Taiwan (CMRPD1G0341-3 and BMRPC75). S.W. is funded by a Wellcome Principal Research Fellowship (200846/Z/16/Z), an ERC Advanced Grant (789274), and the Bettencourt–Schueller Foundation. S.L. is funded by the Ministry of Science and Technology, Taiwan (105-2628-B-001-005-MY3 and 107-2311-B-001-042-MY3) and Academia Sinica, Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

S.L., S.W., B.S., and C.-H.T. designed the study and analyzed the data. B.S. performed behavioral experiments. C.-H.T. performed imaging experiments. Y.-A.J. performed naïve water-seeking experiments. T.-H.C. and C.-L.W. assisted in the initial establishment of the water reward olfactory conditioning paradigm. S.L. directed the research. S.L. and S.W. wrote the paper.

Corresponding author

Correspondence to Suewei Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Liqun Luo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Controls and additional experiments related to Fig. 2.

a, Knockdown of lk in all LK neurons (LK-GAL4) or in LHLK neurons (ap-GAL4) using a second RNAi line impairs 6 h water memory performance in thirsty flies (LK-GAL4: p<0.015; ap-GAL4: p<0.025; n = 8; one-way ANOVA with Tukey’s test). b, Permissive 23 ˚C control for experiments in Fig. 2a. No effect was observed (p>0.987, n = 8; one-way ANOVA with Tukey’s test). c, Permissive 23 ˚C control for experiments in Fig. 2c. No effect was observed (p>0.552, n = 8; one-way ANOVA with Tukey’s test). d, Expression of UAS-mCD8::GFP driven by LK-GAL4 (LK neurons, green) and LexAop-rCD2::RFP driven by MB247-LexA::P65 (mushroom bodies, magenta). Brain also stained with anti-Brp antibody (gray). Four brains were examined and show the same expression pattern. Scale bar 50 µm. e, Expression of UAS-mCD8::GFP driven by ap-GAL4 (green) and LexAop-rCD2::RFP driven by MB247-LexA::P65 (magenta). Four brains were examined and show the same expression pattern. Scale bar 50 µm. f, Knockdown of lk in LHLK neurons using ap-GAL4 impairs innate water-seeking behavior (p<0.023, n = 9-12; Kruskal-Wallis test with Dunn’s multiple comparisons test). g, RNAi knockdown of lk in LHLK neurons using ap-GAL4 does not affect resistance to desiccation (p>0.098, n = 8; two-way ANOVA with Tukey’s test). Mean ± SEM are shown. h, Permissive 23 °C control for experiments in Fig. 2h. No effect was observed (p>0.82, n = 8; one-way ANOVA with Tukey’s test). Temperature regimens shown above a-c and h. Box-plots: center line indicates median; box limits, upper and lower quartiles; whiskers, max to min range; dots, individual data points. See Supplementary Table 3 for statistics details.

Extended Data Fig. 2 Additional experiments related to Fig. 3.

a, RNAi knockdown of Lkr in PPL1-γ1pedc DANs (MB320C-splitGAL4) does not affect 6 h water memory performance (p>0.48, n = 7-8; one-way ANOVA with Tukey’s test). RNAi knockdown of Lkr in PPL1 (TH-GAL4 and MB060B-splitGAL4) or PAM (DDC-GAL4 and R58E02-GAL4) DANs impairs 6 h performance (p<0.02, n=7-14; one-way ANOVA with Tukey’s test). b, Knockdown of Lkr after eclosion in TH-GAL4- and DDC-GAL4-labeled DANs with tubp-GAL80ts and UAS-Lkr-RNAi impairs 6 h water memory performance in thirsty flies (TH-GAL4: p<0.032; DDC-GAL4: p<0.0001; n = 12; one-way ANOVA with Tukey’s test). c, Adult brain expression of UAS-mCD8::GFP driven by MB087C-splitGAL4 (PAM-β′2a, green) and LexAop-rCD2::RFP driven by MB247-LexA::p65 (mushroom bodies, magenta). d, Adult brain expression of UAS-mCD8::GFP driven by MB296B-splitGAL4 (PPL1-γ2α′1, green) and LexAop-rCD2::RFP driven by MB247-LexA::p65 (magenta). Both brains counterstained with anti-Brp antibody (gray). Four brains were examined for each splitGAL4 and their expression patterns are consistent. Scale bars 50 µm. e, Knockdown of Lkr in PAM-β′2a (MB087C-splitGAL4) and PPL1-γ2α′1 (MB296B-splitGAL4) DANs with a second RNAi line impairs 6 h water memory performance (p<0.03, n = 12; Kruskal-Wallis test with Dunn’s multiple comparisons test). Temperature regimens shown above b and e. Box-plots: center line indicates median; box limits, upper and lower quartiles; whiskers, max to min range; dots, individual data points. See Supplementary Table 3 for statistics details.

Extended Data Fig. 3 Controls and additional experiments related to Fig. 3.

a, Permissive 23 ˚C controls for experiments in Fig. 3b. No defect was observed (MB296B: p>0.38; MB087C: p>0.72; n = 8; one-way ANOVA with Tukey’s test). b, Activating PAM-β′2a (MB087C) and PPL1-γ2α′1 (MB296B) DANs with UAS-TrpA1 at 32 ˚C 10 min before and during training had no effect on 6 h water memory (MB087C: p>0.97; MB296B: p>0.9999; n = 8; one-way ANOVA with Tukey’s test). c, Activating PAM-β′2a (MB087C) and PPL1-γ2α′1 (MB296B) DANs with UAS-TrpA1 at 32 ˚C immediately after training until 30 min before testing did not affect 6 h water memory (MB087C: p>0.46; MB296B: p>0.9999; n = 8; Kruskal-Willis test with Dunn’s multiple comparisons test). d, Permissive 23 ˚C control for experiments in Fig. 3c. No enhancement was observed of 6 h water memory performance in water-satiated flies (p>0.9999, n = 8; Kruskal-Willis test with Dunn’s multiple comparisons test). e, Blocking PAM-β′2a (MB087C) 20 min before and during testing did not enhance 6 h water memory performance in thirsty flies (p>0.41, n = 8; one-way ANOVA with Tukey’s test). f, Blocking PPL1-γ2α′1 (MB296B) DANs 20 min before and during testing did not enhance 6 h water memory performance in water-satiated flies (p>0.73, n = 8; one-way ANOVA with Tukey’s test). g, Permissive 23 ˚C control for experiments in Fig. 3d. No effect was observed (p>0.97, n = 8; one-way ANOVA with Tukey’s test). Temperature regimens shown above a-g. Box-plots: center line indicates median; box limits, upper and lower quartiles; whiskers, max to min range; dots, individual data points. h, Incubating explant brains with 100 nM, but not 1 nM, LK decreases GCaMP6m signal in PPL1-γ2α′1 (MB296B) DANs (100 nM: p=0.0057, n = 12; 1 nM: p=0.8659, n = 14; two-tailed paired t-test). Pre: before incubating brains with peptides. Post: after incubating brains with peptides. i, Incubating explant brains with 100 nM, but not 1 nM, LK decreases GCaMP6m signal in PAM-β′2a (MB087C) DANs (100 nM: p=0.0225, n = 11; 1 nM: p=0.2423, n = 12; two-tailed paired t-test). Pre: before incubating brains with peptides. Post: after incubating brains with peptides. Representative images of GCaMP6m signal shown under the plots in h and i. See Supplementary Table 3 for statistics details.

Extended Data Fig. 4 Controls and additional experiments related to Fig. 4.

a, Knockdown of lk in all LK neurons (LK-GAL4) or only LHLK neurons (ap-GAL4) using a second RNAi line impairs 6 h sugar memory performance in hungry flies (LK-GAL4: p<0.0001; ap-GAL4: p<0.0025; n = 8; one-way ANOVA with Tukey’s test). b, RNAi knockdown of lk in all LK neurons (LK-GAL4) or only LHLK neurons (ap-GAL4) does not affect immediate sugar memory performance (LK-GAL4: p>0.98; ap-GAL4: p>0.81; n = 8; one-way ANOVA with Tukey’s test). c, Permissive 23 ˚C control for experiments in Fig. 4c. No effect was observed (LK-GAL4: p>0.68; ap-GAL4: p>0.66; n = 8; one-way ANOVA with Tukey’s test). d, RNAi knockdown of Lkr in PAM-β′2a (MB087C-splitGAL4), PPL1-γ2α′1 (MB296B-splitGAL4), or PPL1-γ1pedc (MB320C-splitGAL4) DANs does not affect 6 h sugar memory performance (MB087C: p>0.49, n = 8; MB296B: p>0.98; MB320C: p>0.7; n = 8; one-way ANOVA with Tukey’s test). e, RNAi knockdown of Lkr in DDC-GAL4- but not TH-GAL4-labeled DANs impairs 6 h sugar memory performance in hungry flies (DDC-GAL4: p<0.036, n = 8; TH-GAL4: p>0.97, n = 8; one-way ANOVA with Tukey’s test). f, Adult brain expression of UAS-mCD8::GFP driven by MB056B-splitGAL4 (PAM-β′2mp, green) and LexAop-rCD2::RFP driven by MB247-LexA::p65 (mushroom bodies, magenta). Counterstained with anti-Brp antibody (gray). Four brains were examined and show the same expression pattern. Scale bar 50 µm. g, Knockdown of Lkr in PAM-β′2mp DANs with MB056B-splitGAL4 and a second RNAi line impairs 6 h sugar memory (p<0.0002, n = 8; one-way ANOVA with Tukey’s test). h, Permissive 23 ˚C control for experiments in Fig. 4f. No effect was observed (p>0.079, n = 8; one-way ANOVA with Tukey’s test). i, Blocking PAM-β′2mp (MB056B) DANs with UAS-Shits1 at 32 ˚C 20 min before and during training does not affect 6 h sugar memory performance (p>0.437, n = 8; one-way ANOVA with Tukey’s test). j, Blocking PAM-β′2mp (MB056B) DANs with UAS-Shits1 at 32 ˚C immediately after training until 30 min before testing does not affect 6 h sugar memory performance (p>0.21, n = 8; one-way ANOVA with Tukey’s test). k, Permissive 23 ˚C control for experiments in Fig. 4g. No effect was observed (p>0.55, n = 8; one-way ANOVA with Tukey’s test). l, Adult brain expression of JFRC2-10XUAS-IVS-mCDGFP driven by R67C06-GAL4 (putative Lkr expressing neurons, green). Counterstained with anti-Brp antibody (gray). Confocal stack downloaded from JFRC FlyLight database38. Illustration below indicates position of R67C06 enhancer in fly genome. Scale bar 50 µm. Temperature regimens shown above a-c and g-k. Box-plots: center line indicates median; box limits, upper and lower quartiles; whiskers, max to min range; dots, individual data points. See Supplementary Table 3 for statistics details.

Extended Data Fig. 5 Controls and additional experiments related to Fig. 5.

a, Illustration of the anatomical and functional relationships between LHLK neurons and the three identified DANs that control water and sugar memory expression. b, Permissive 23 ˚C control for experiments in Fig. 5d. No effect was observed (dNPF-GAL4: p>0.63; R50H05-GAL4: p>0.48; n = 8; one-way ANOVA with Tukey’s test). Temperature regimens shown above the plot. Box-plots: center line indicates median; box limits, upper and lower quartiles; whiskers, max to min range; dots, individual data points. c, Top: incubating explant brains with 100 nM scrambled control peptide for dNPF does not change GCaMP6m signal in PAM-β′2a (MB087C>GCaMP6m) DANs (p=0.5186, n = 12; two-tailed Wilcoxon matched-pairs signed rank test). Bottom: incubating explant brains with solvent-only (control for serotonin (5-HT) experiments in Fig. 5h) does not change GCaMP6m signal in PPL1-γ2α′1 (MB296B>GCaMP6m) DANs (p=0.6645, n = 12; two-tailed paired t-Test). Pre: before incubating brains with peptides or control solvent. Post: after incubating brains with peptides or control solvent. Representative images of GCaMP6m signal shown to right of each plot. See Supplementary Table 3 for statistics details. d, RT-PCR of Lkr and Rpl32 transcripts extracted from third-instar larvae. Pan-neuronal da-GAL4 was used to drive UAS-Lkr-RNAi2. Intensity of the PCR bands was normalized to the internal control Rpl32. Quantification of intensities relative to the da-GAL4-control is shown. The experiment was repeated three times with consistent results.

Supplementary information

Reporting Summary

Supplementary Tables

Supplementary Tables 1–3.

Supplementary video 1

Adult brain expression of LK-GAL4-driven mCD8::GFP (green), MB247-LexA-driven rCD2::RFP (magenta) and Brp (gray).

Supplementary video 2

Adult brain expression of ap-GAL4-driven mCD8::GFP (green) and MB247-LexA-driven rCD2::RFP (magenta).

Supplementary video 3

Adult brain expression of MB087C-splitGAL4-driven mCD8::GFP (green), MB247-LexA-driven rCD2::RFP (magenta) and Brp (gray).

Supplementary video 4

Adult brain expression of MB296B-splitGAL4-driven mCD8::GFP (green), MB247-LexA-driven rCD2::RFP (magenta) and Brp (gray).

Supplementary video 5

Adult brain expression of MB056B-splitGAL4-driven mCD8::GFP (green), MB247-LexA-driven rCD2::RFP (magenta) and Brp (gray).

Supplementary video 6

Registered expression of LK-GAL4-driven mCD8::GFP (LK neurons; green) and MB087C-splitGAL4-driven mCD8::GFP (PAM-β′2a DANs; magenta) in a standard brain.

Supplementary video 7

Registered expression of LK-GAL4-driven mCD8::GFP (LK neurons; green) and MB296B-splitGAL4-driven mCD8::GFP (PPL1-γ2α′1 DANs; magenta) in a standard brain.

Supplementary video 8

Registered expression of LK-GAL4-driven mCD8::GFP (LK neurons; green) and MB056B-splitGAL4-driven mCD8::GFP (PAM-β′2mp DANs; magenta) in a standard brain.

Supplementary video 9

Adult brain expression of Lkr Trojan-GAL4-driven mCD8::GFP (green).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senapati, B., Tsao, CH., Juan, YA. et al. A neural mechanism for deprivation state-specific expression of relevant memories in Drosophila. Nat Neurosci 22, 2029–2039 (2019). https://doi.org/10.1038/s41593-019-0515-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-019-0515-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing