Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation

Abstract

Arrestins regulate the signaling of ligand-activated, phosphorylated G-protein-coupled receptors (GPCRs). Different patterns of receptor phosphorylation (phosphorylation barcode) can modulate arrestin conformations, resulting in distinct functional outcomes (for example, desensitization, internalization, and downstream signaling). However, the mechanism of arrestin activation and how distinct receptor phosphorylation patterns could induce different conformational changes on arrestin are not fully understood. We analyzed how each arrestin amino acid contributes to its different conformational states. We identified a conserved structural motif that restricts the mobility of the arrestin finger loop in the inactive state and appears to be regulated by receptor phosphorylation. Distal and proximal receptor phosphorylation sites appear to selectively engage with distinct arrestin structural motifs (that is, micro-locks) to induce different arrestin conformations. These observations suggest a model in which different phosphorylation patterns of the GPCR C terminus can combinatorially modulate the conformation of the finger loop and other phosphorylation-sensitive structural elements to drive distinct arrestin conformation and functional outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The arrestin signaling cycle.
Fig. 2: Systematic comparison of arrestin structures.
Fig. 3: An ionic lock keeps the finger loop in the inactive state.
Fig. 4: Analysis of arrestin residues that interact with receptor-attached phosphates.
Fig. 5: Summary of phosphorylation-sensitive motifs for arrestin activation.

Similar content being viewed by others

References

  1. Shukla, A. K., Xiao, K. & Lefkowitz, R. J. Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem. Sci. 36, 457–469 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Lefkowitz, R. J. & Shenoy, S. K. Transduction of receptor signals by β-arrestins. Science 308, 512–517 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. Kobilka, B. K. G protein coupled receptor structure and activation. Biochim. Biophys. Acta 1768, 794–807 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. Luttrell, L. M. & Lefkowitz, R. J. The role of β-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell Sci. 115, 455–465 (2002).

    PubMed  CAS  Google Scholar 

  5. Komolov, K. E. et al. Structural and functional analysis of a β2-adrenergic receptor complex with GRK5. Cell 169, 407–421 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. DeWire, S. M., Ahn, S., Lefkowitz, R. J. & Shenoy, S. K. β-arrestins and cell signaling. Annu. Rev. Physiol. 69, 483–510 (2007).

    Article  PubMed  CAS  Google Scholar 

  7. Gurevich, V. V. & Gurevich, E. V. The molecular acrobatics of arrestin activation. Trends Pharmacol. Sci. 25, 105–111 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. Nobles, K. N. et al. Distinct phosphorylation sites on the β2-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci. Signal. 4, ra51 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yang, F. et al. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR. Nat. Commun. 6, 8202 (2015).

    Article  PubMed  Google Scholar 

  10. Thomsen, A. R. B. et al. GPCR–G protein–β-arrestin super-complex mediates sustained G protein signaling. Cell 166, 907–919 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kumari, P. et al. Functional competence of a partially engaged GPCR–β-arrestin complex. Nat. Commun. 7, 13416 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kumari, P. et al. Core engagement with β-arrestin is dispensable for agonist-induced vasopressin receptor endocytosis and ERK activation. Mol. Biol. Cell 28, 1003–1010 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cahill, T. J. III. et al. Distinct conformations of GPCR-β-arrestin complexes mediate desensitization, signaling, and endocytosis. Proc. Natl Acad. Sci. USA 114, 2562–2567 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Shukla, A. K. et al. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497, 137–141 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Shukla, A. K. et al. Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512, 218–222 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kang, Y. et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523, 561–567 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhou, X. E. et al. Identification of phosphorylation codes for arrestin recruitment by G-protein-coupled receptors. Cell 170, 457–469 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Ranjan, R., Dwivedi, H., Baidya, M., Kumar, M. & Shukla, A. K. Novel structural insights into GPCR–β-arrestin interaction and signaling. Trends Cell Biol. 27, 851–862 (2017).

    Article  PubMed  CAS  Google Scholar 

  19. Sukhwal, A., Bhattacharyya, M. & Vishveshwara, S. Network approach for capturing ligand-induced subtle global changes in protein structures. Acta Crystallogr. D Biol. Crystallogr. 67, 429–439 (2011).

    Article  PubMed  CAS  Google Scholar 

  20. Greene, L. H. Protein structure networks. Brief. Funct. Genomics 11, 469–478 (2012).

    Article  PubMed  Google Scholar 

  21. Kornev, A. P., Haste, N. M., Taylor, S. S. & Eyck, L. F. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc. Natl Acad. Sci. USA 103, 17783–17788 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. del Sol, A., Fujihashi, H., Amoros, D. & Nussinov, R. Residues crucial for maintaining short paths in network communication mediate signaling in proteins. Mol. Syst. Biol. 2, 2006 0019 (2006).

    PubMed  PubMed Central  Google Scholar 

  23. Flock, T. et al. Universal allosteric mechanism for Gα activation by GPCRs. Nature 524, 173–179 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Venkatakrishnan, A. J. et al. Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature 536, 484–487 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Flock, T. et al. Selectivity determinants of GPCR–G-protein binding. Nature 545, 317–322 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Venkatakrishnan, A. J. et al. Molecular signatures of G-protein-coupled receptors. Nature 494, 185–194 (2013).

    Article  PubMed  CAS  Google Scholar 

  27. Chen, Q. et al. Structural basis of arrestin-3 activation and signaling. Nat. Commun. 8, 1427 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gurevich, V. V. & Gurevich, E. V. The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol. Ther. 110, 465–502 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ostermaier, M. K., Peterhans, C., Jaussi, R., Deupi, X. & Standfuss, J. Functional map of arrestin-1 at single amino acid resolution. Proc. Natl Acad. Sci. USA 111, 1825–1830 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hirsch, J. A., Schubert, C., Gurevich, V. V. & Sigler, P. B. The 2.8 Å crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97, 257–269 (1999).

    Article  PubMed  CAS  Google Scholar 

  31. Hanson, S. M. et al. Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc. Natl Acad. Sci. USA 103, 4900–4905 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Vishnivetskiy, S. A. et al. Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins. J. Biol. Chem. 286, 24288–24299 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhuo, Y., Vishnivetskiy, S. A., Zhan, X., Gurevich, V. V. & Klug, C. S. Identification of receptor binding-induced conformational changes in non-visual arrestins. J. Biol. Chem. 289, 20991–21002 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Peterhans, C., Lally, C. C., Ostermaier, M. K., Sommer, M. E. & Standfuss, J. Functional map of arrestin binding to phosphorylated opsin, with and without agonist. Sci. Rep. 6, 28686 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gurevich, V. V. & Benovic, J. L. Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin. J. Biol. Chem. 268, 11628–11638 (1993).

    PubMed  CAS  Google Scholar 

  36. Gurevich, V. V. & Benovic, J. L. Visual arrestin binding to rhodopsin. Diverse functional roles of positively charged residues within the phosphorylation-recognition region of arrestin. J. Biol. Chem. 270, 6010–6016 (1995).

    Article  PubMed  CAS  Google Scholar 

  37. Miskei, M. et al. Fuzziness enables context dependence of protein interactions. FEBS Lett. 591, 2682–2695 (2017).

    Article  PubMed  CAS  Google Scholar 

  38. van der Lee, R. et al. Intrinsically disordered segments affect protein half-life in the cell and during evolution. Cell Rep. 8, 1832–1844 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Robinson, K. A. et al. The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system. J. Neurochem. 135, 1129–1139 (2015).

    Article  PubMed  CAS  Google Scholar 

  40. Galliera, E. et al. β-Arrestin-dependent constitutive internalization of the human chemokine decoy receptor D6. J. Biol. Chem. 279, 25590–25597 (2004).

    Article  PubMed  CAS  Google Scholar 

  41. Konagurthu, A. S., Whisstock, J. C., Stuckey, P. J. & Lesk, A. M. MUSTANG: a multiple structural alignment algorithm. Proteins 64, 559–574 (2006).

    Article  PubMed  CAS  Google Scholar 

  42. Finn, R. D. et al. HMMER web server: 2015 update. Nucleic Acids Res. 43(W1), W30–W38 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Liu, Y., Schmidt, B. & Maskell, D. L. MSAProbs: multiple sequence alignment based on pair hidden Markov models and partition function posterior probabilities. Bioinformatics 26, 1958–1964 (2010).

    Article  PubMed  CAS  Google Scholar 

  44. Granzin, J. et al. Crystal structure of p44, a constitutively active splice variant of visual arrestin. J. Mol. Biol. 416, 611–618 (2012).

    Article  PubMed  CAS  Google Scholar 

  45. Granzin, J. et al. X-ray crystal structure of arrestin from bovine rod outer segments. Nature 391, 918–921 (1998).

    Article  PubMed  CAS  Google Scholar 

  46. Han, M., Gurevich, V. V., Vishnivetskiy, S. A., Sigler, P. B. & Schubert, C. Crystal structure of β-arrestin at 1.9Å: possible mechanism of receptor binding and membrane translocation. Structure 9, 869–880 (2001).

    Article  PubMed  CAS  Google Scholar 

  47. Hwang, J. et al. The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Nat. Commun. 5, 2958 (2014).

    Article  PubMed  CAS  Google Scholar 

  48. Kang, D. S. et al. Structure of an arrestin2–clathrin complex reveals a novel clathrin binding domain that modulates receptor trafficking. J. Biol. Chem. 284, 29860–29872 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kim, Y. J. et al. Crystal structure of pre-activated arrestin p44. Nature 497, 142–146 (2013).

    Article  PubMed  CAS  Google Scholar 

  50. Milano, S. K., Kim, Y. M., Stefano, F. P., Benovic, J. L. & Brenner, C. Nonvisual arrestin oligomerization and cellular localization are regulated by inositol hexakisphosphate binding. J. Biol. Chem. 281, 9812–9823 (2006).

    Article  PubMed  CAS  Google Scholar 

  51. Milano, S. K., Pace, H. C., Kim, Y. M., Brenner, C. & Benovic, J. L. Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry 41, 3321–3328 (2002).

    Article  PubMed  CAS  Google Scholar 

  52. Polekhina, G. et al. Structure of the N-terminal domain of human thioredoxin-interacting protein. Acta Crystallogr. D Biol. Crystallogr. 69, 333–344 (2013).

    Article  PubMed  CAS  Google Scholar 

  53. Qi, S., O’Hayre, M., Gutkind, J. S. & Hurley, J. H. Insights into β2-adrenergic receptor binding from structures of the N-terminal lobe of ARRDC3. Protein Sci. 23, 1708–1716 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sutton, R. B. et al. Crystal structure of cone arrestin at 2.3Å: evolution of receptor specificity. J. Mol. Biol. 354, 1069–1080 (2005).

    Article  PubMed  CAS  Google Scholar 

  55. Zhan, X., Gimenez, L. E., Gurevich, V. V. & Spiller, B. W. Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes. J. Mol. Biol. 406, 467–478 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Doncheva, N. T., Klein, K., Domingues, F. S. & Albrecht, M. Analyzing and visualizing residue networks of protein structures. Trends Biochem. Sci. 36, 179–182 (2011).

    Article  PubMed  CAS  Google Scholar 

  57. Kayikci, M. et al. Visualization and analysis of non-covalent contacts using the Protein Contacts Atlas. Nat. Struct. Mol. Biol. 25, 185–194 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Babu, M. M. NCI: a server to identify non-canonical interactions in protein structures. Nucleic Acids Res. 31, 3345–3348 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Altenhoff, A. M. et al. The OMA orthology database in 2018: retrieving evolutionary relationships among all domains of life through richer web and programmatic interfaces. Nucleic Acids Res. 46(D1), D477–D485 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Standfuss for discussing the results of previous mutagenesis experiments and X. Deupi, D. Veprintsev, D. Meyer, G. F. X. Schertler, S. Chavali, P. Lakshminarasimhan, and H. Harbrecht for their comments on the manuscript. This work was supported by the Medical Research Council (MC_U105185859; M.M.B., T.F., and A. Sente) and the Boehringer Ingelheim Fond (T.F.). A. Sente was funded by a Wolfson College Research Grant, MRC Summer Studentship, and The Lister Institute Summer Studentship. M.M.B. is a Lister Institute Research Prize Fellow and is supported by an ERC Consolidator Grant. The research program in the laboratory of A.K.S. is supported by an Intermediate Fellowship from the Wellcome Trust DBT India Alliance (IA/I/14/1/501285). T.F. is a Research Fellow of Fitzwilliam College, University of Cambridge, UK.

Author information

Authors and Affiliations

Authors

Contributions

A. Sente and T.F. collected data. A. Sente, R.P., and T.F. wrote scripts and processed the data. S.B. generated the arrestin alignment. A.M.L. helped with analyzing conformational changes. A. Srivastava, M.B., and A.K.S. designed and performed bimane fluorescence experiments. All of the authors analyzed and interpreted the results. A. Sente, M.M.B., and T.F. wrote the manuscript with input from all of the authors. M.M.B. and T.F. designed and supervised the project.

Corresponding authors

Correspondence to Andrija Sente, M. Madan Babu or Tilman Flock.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Clustering arrestin structures by their residue contact fingerprints to assign structures to signaling states.

Clustering arrestin structures by residue contact fingerprints separates active and inactive arrestins. Within the cluster of inactive arrestins, visual and β-arrestins cluster separately. Furthermore, rod and cone arrestins cluster separately within the branch of visual arrestins. 3GD1 and 3GC3 are co-crystallized with a clathrin, but similar to the inactive structure. Moreover, structures 3UGU and 3UGX, which are thought to be structures of pre-activated arrestins, cluster with other inactive state structures and were considered to be inactive in further analysis.

Supplementary Figure 2 Analysis of arrestin subtypes with focus on β-arrestins.

a, Clustering arrestin structures by residue contact fingerprints separates active and inactive arrestins. Within the cluster of inactive state structures, the method clearly distinguishes between visual and β-arrestins, and within the subcluster of visual arrestins separates rod and cone arrestins. Extracting the features (contacts) that determine the clustering pattern enables the analysis of differences between visual and β-arrestins. b, Contacts that are only present in β-arrestins and absent from visual arrestins (see the Methods for details). c, Contacts shown in b plotted on the structure (PDB 1G4R, chain A). Most of the contacts unique to β-arrestins seem to occur in the C domain. For instance, there seems to be a group of contacts stabilizing the distal part of the body of the C domain. d, Sequence analysis showing that the most variable region (sequence-wise) between visual and β-arrestins is the region surrounding the C-loop (C.s15s16). Given that this loop is known to interact with transmembrane helix 4 of the receptor, it is possible that the sequence differences identified here might be important in determining the differences in receptor selectivity across different arrestin subtypes.

Supplementary Figure 3 Analysis of arrestin subtypes with focus on visual arrestins.

a, Contacts that are only present in visual arrestins and absent from β-arrestins. b, Contacts shown in a plotted onto the structure (PDB 1CF1, chain D). The analysis reveals a number of inter-domain contacts present uniquely in visual arrestins. Moreover, the region around the C-loop seems to be stabilized by additional contacts absent from β-arrestins. The region around the C-loop (C.s15s16) is the most variable region in terms of the amino acid sequence between visual and β-arrestins (Supplementary Fig. 3d) and hence could account for functional differences in visual and β-arrestins.

Supplementary Figure 4 Extended analysis of the finger loop conformation in all inactive state arrestin structures.

a, Comparison of the finger loop lock in all crystal structures of inactive arrestin showing that in all cases where the lock is not perfectly engaged, crystal contacts with other monomers in the asymmetric unit are present. b,c, Example of interchain contacts that affect the conformation of the finger loop (PDB 1CF1, chains B and C).

Supplementary Figure 5 Bimane fluorescence assay confirms the existence of multiple finger loop conformations.

ac, Conformational rearrangement in the finger loop of β-arrestins upon their interaction with the tail phosphopeptide (V2Rpp) and full receptor (β2V2R). Monobromobimane (mBBr) is chemically attached to a cysteine engineered in the finger loop of β-arrestins at positions L68N.s5s6.5 (β-arrestin-1) and L69N.s5s6.5 (β-arrestin-2). A change in fluorescence reflects conformational change or a change in environment (and thereby fluorescence quenching) of the finger loop. a,b, Purified βarr1mBBr (a) and βarr2mBBr (b) were incubated with either V2Rpp or β2V2R (agonist bound and phosphorylated) (molar ratio of βarr1:V2Rpp/ β2V2R 1:3 in a concentration range of 1–5 μM). The fluorescence intensity of βarrmBBr alone was measured and used as the normalization reference (maximum value treated as 100%). Bimane fluorescence at λmax is presented as a bar graph (right). Values represent the mean ± s.e.m. of 4–5 independent experiments analyzed using one-way ANOVA with Bonferroni post-test (**P < 0.01; ***P < 0.001). The fluorescence intensity of βarrmBBr increases upon its interaction with V2Rpp, while it decreases upon interaction with β2V2R. We note that the patterns of bimane fluorescence observed here differ from those reported in the literature for the rhodopsin–arrestin-1 system (J. Biol. Chem. 280, 6861–6871, 2005; J. Biol. Chem. 281, 9407–9417, 2006). These differences likely arise from significantly different experimental conditions (e.g., protein concentrations, buffer conditions, optical setting, receptor environment, etc.). c, Schematic representation of tail-engaged and fully engaged receptor– β-arrestin complexes depicting the changes in finger loop conformation and environment.

Supplementary Figure 6 Effects of alanine mutations of finger loop lock residues on arrestin binding to the receptor.

Mutating the two arginines appears to increase binding of arrestin to the receptor, presumably by pre-releasing the finger loop in an ‘open’ conformation. Such an effect is not observed when finger loop residues are mutated, possibly because it interferes with binding to the receptor. The absence of increased receptor binding for N.S6.2 in the dataset of Peterhans et al. may potentially arise from different experimental conditions (Methods). Number (n) within each bar indicates the number of independent experiments for the given mutant arrestin.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6

Reporting Summary

Supplementary Table 1

The table shows (tab 1) an overview of structures that contain an arrestin domain and (tab 2) information about the structure parameters and associated publications

Supplementary Table 2

The table contains information about the conformation of the finger loop in inactive state arrestin structures

Supplementary Table 3

The table contains mapping of Common Arrestin Numbering (CAN) to published arrestin structures

Supplementary Dataset 1

Common Arrestin Numbering (CAN). The top plot shows the ‘consensus secondary structure’ of arrestin. The alignment shows structurally equivalent positions for all known arrestin structures. The bottom plot highlights frequencies to find a secondary structure at equivalent positions in different arrestin structures

Supplementary Dataset 2

Arrestin subtype analysis alignment. Sequence alignment of arrestin orthologs (fasta format)

Supplementary Dataset 3

Arrestin Residue Contact Networks (RCNs). Dataset containing intra-arrestin residue contacts of 18 structures analyzed in the paper (Methods)

Source Data, Supplementary Figure 5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sente, A., Peer, R., Srivastava, A. et al. Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation. Nat Struct Mol Biol 25, 538–545 (2018). https://doi.org/10.1038/s41594-018-0071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-018-0071-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing