Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of ribosome stalling during translation of a poly(A) tail

Abstract

Faulty or damaged messenger RNAs are detected by the cell when translating ribosomes stall during elongation and trigger pathways of mRNA decay, nascent protein degradation and ribosome recycling. The most common mRNA defect in eukaryotes is probably inappropriate polyadenylation at near-cognate sites within the coding region. How ribosomes stall selectively when they encounter poly(A) is unclear. Here, we use biochemical and structural approaches in mammalian systems to show that poly-lysine, encoded by poly(A), favors a peptidyl-transfer RNA conformation suboptimal for peptide bond formation. This conformation partially slows elongation, permitting poly(A) mRNA in the ribosome’s decoding center to adopt a ribosomal RNA-stabilized single-stranded helix. The reconfigured decoding center clashes with incoming aminoacyl-tRNA, thereby precluding elongation. Thus, coincidence detection of poly-lysine in the exit tunnel and poly(A) in the decoding center allows ribosomes to detect aberrant mRNAs selectively, stall elongation and trigger downstream quality control pathways essential for cellular homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reconstitution of ribosome stalling on poly(A) mRNA in vitro.
Fig. 2: Structure of the ribosome stalled during poly(A) translation.
Fig. 3: Poly(A)-induced decoding center rearrangement.
Fig. 4: Peptidyl-tRNA is mis-positioned in the poly(A) stalled ribosome.
Fig. 5: Analysis of PTC geometry by puromycin reactivity.
Fig. 6: Coincidence detection of the nascent chain and mRNA mediate stalling.
Fig. 7: Coincidence detection model for ribosome stalling on poly(A).

Similar content being viewed by others

Data availability

The poly(A)-stalled ribosome map has been deposited to the EMDB with accession code EMD-10181. Atomic coordinates have been deposited to the Protein Data Bank under accession code PDB 6SGC. A re-refined version of 5LZV that includes the ester bond between the P-site tRNA and the attached Valine of the nascent chain with the correct bond length (used in Extended Data Fig. 7b,c) is available upon reasonable request. Source data for Figs. 1a, 5a and 6c and Extended Data Fig. 1a,b are available with the paper online. All other data are available upon reasonable request.

References

  1. Wolff, S., Weissman, J. S. & Dillin, A. Differential scales of protein quality control. Cell 157, 52–64 (2014).

    CAS  PubMed  Google Scholar 

  2. Balchin, D., Hayer-Hartl, M. & Hartl, F. U. In vivo aspects of protein folding and quality control. Science 353, aac4354 (2016).

    PubMed  Google Scholar 

  3. Labbadia, J. & Morimoto, R. I. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435–464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kurosaki, T., Popp, M. W. & Maquat, L. E. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat. Rev. Mol. Cell Biol. 20, 406–420 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. van Hoof, A. & Wagner, E. J. A brief survey of mRNA surveillance. Trends Biochem. Sci. 36, 585–592 (2011).

    PubMed  PubMed Central  Google Scholar 

  6. Shao, S. & Hegde, R. S. Target selection during protein quality control. Trends Biochem. Sci. 41, 124–137 (2016).

    CAS  PubMed  Google Scholar 

  7. Roy, B. & Jacobson, A. The intimate relationships of mRNA decay and translation. Trends Genet. 29, 691–699 (2013).

    CAS  PubMed  Google Scholar 

  8. Inada, T. Quality control systems for aberrant mRNAs induced by aberrant translation elongation and termination. Biochim. Biophys. Acta Gene Regul. Mech. 1829, 634–642 (2013).

    CAS  Google Scholar 

  9. Shoemaker, C. J. & Green, R. Translation drives mRNA quality control. Nat. Struct. Mol. Biol. 19, 594–601 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Doma, M. K. & Parker, R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440, 561–564 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Letzring, D. P., Wolf, A. S., Brule, C. E. & Grayhack, E. J. Translation of CGA codon repeats in yeast involves quality control components and ribosomal protein L1. RNA 19, 1208–1217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Shao, S., Von der Malsburg, K. & Hegde, R. S. Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation. Mol. Cell 50, 637–648 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsuboi, T. et al. Dom34:hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3’ end of aberrant mRNA. Mol. Cell 46, 518–529 (2012).

    CAS  PubMed  Google Scholar 

  14. Juszkiewicz, S. & Hegde, R. S. Initiation of quality control during poly(A) translation requires site-specific ribosome ubiquitination. Mol. Cell 65, 743–750.e4 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sundaramoorthy, E. et al. ZNF598 and RACK1 regulate mammalian ribosome-associated quality control function by mediating regulatory 40S ribosomal ubiquitylation. Mol. Cell 65, 751–760.e4 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Arthur, L. L. et al. Translational control by lysine-encoding A-rich sequences. Sci. Adv. 1, e1500154 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Frischmeyer, P. A. et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258–2261 (2002).

    CAS  PubMed  Google Scholar 

  18. van Hoof, A., Frischmeyer, P. A., Dietz, H. C. & Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262–2264 (2002).

    PubMed  Google Scholar 

  19. Bengtson, M. H. & Joazeiro, Ca. P. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 467, 470–473 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ito-Harashima, S., Kuroha, K., Tatematsu, T. & Inada, T. Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. Genes Dev. 21, 519–524 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Defenouillere, Q. et al. Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products. Proc. Natl Acad. Sci. USA 110, 5046–5051 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Verma, R., Oania, R. S., Kolawa, N. J. & Deshaies, R. J. Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. eLife 2, e00308 (2013).

    PubMed  PubMed Central  Google Scholar 

  23. Brandman, O. et al. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151, 1042–1054 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shoemaker, C. J., Eyler, D. E. & Green, R. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop off to initiate no-go decay. Science 330, 369–372 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pisareva, V. P., Skabkin, M. A., Hellen, C. U. T., Pestova, T. V. & Pisarev, A. V. Dissociation by pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. EMBO J. 30, 1804–1817 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yonashiro, R. et al. The Rqc2/Tae2 subunit of the ribosome-associated quality control (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation. eLife 5, 1–16 (2016).

    Google Scholar 

  27. Izawa, T., Park, S.-H., Zhao, L., Hartl, F. U. & Neupert, W. Cytosolic protein Vms1 links ribosome quality control to mitochondrial and cellular homeostasis. Cell 171, 890–903.e18 (2017).

    CAS  PubMed  Google Scholar 

  28. Izawa, T. et al. Roles of Dom34:Hbs1 in nonstop protein clearance from translocators for normal organelle protein influx. Cell Rep. 2, 447–453 (2012).

    CAS  PubMed  Google Scholar 

  29. Choe, Y.-J. et al. Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature 531, 191–195 (2016).

    CAS  PubMed  Google Scholar 

  30. Becker, T. et al. Structure of the no-go mRNA decay complex Dom34-Hbs1 bound to a stalled 80S ribosome. Nat. Struct. Mol. Biol. 18, 715–720 (2011).

    CAS  PubMed  Google Scholar 

  31. Shao, S. et al. Decoding mammalian ribosome-mRNA states by translational GTPase complexes. Cell 167, 1229–1240.e15 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Simms, C. L., Yan, L. L. & Zaher, H. S. Ribosome collision is critical for quality control during no-go decay. Mol. Cell 68, 361–373.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Juszkiewicz, S. et al. ZNF598 is a quality control sensor of collided ribosomes. Mol. Cell 72, 469–481.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ikeuchi, K. et al. Collided ribosomes form a unique structural interface to induce Hel2‐driven quality control pathways. EMBO J. 38, e100276 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. Matsuo, Y. et al. Ubiquitination of stalled ribosome triggers ribosome-associated quality control. Nat. Commun. 8, 159 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Sitron, C. S., Park, J. H. & Brandman, O. Asc1, Hel2, and Slh1 couple translation arrest to nascent chain degradation. RNA 23, 798–810 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Saito, K., Horikawa, W. & Ito, K. Inhibiting K63 polyubiquitination abolishes no-go type stalled translation surveillance in Saccharomyces cerevisiae. PLoS Genet. 11, e1005197 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. Ozsolak, F. et al. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 143, 1018–1029 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pelechano, V., Wei, W. & Steinmetz, L. M. Extensive transcriptional heterogeneity revealed by isoform profiling. Nature 497, 127–131 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Garzia, A. et al. The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs. Nat. Commun. 8, 16056 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Graber, J. H., Cantor, C. R., Mohr, S. C. & Smith, T. F. Genomic detection of new yeast pre-mRNA 3’-end-processing signals. Nucleic Acids Res. 27, 888–894 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Guydosh, N. R. & Green, R. Translation of poly(A) tails leads to precise mRNA cleavage. RNA 23, 749–761 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu, J. & Deutsch, C. Electrostatics in the ribosomal tunnel modulate chain elongation rates. J. Mol. Biol. 384, 73–86 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dimitrova, L. N., Kuroha, K., Tatematsu, T. & Inada, T. Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome. J. Biol. Chem. 284, 10343–10352 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gamble, C. E., Brule, C. E., Dean, K. M., Fields, S. & Grayhack, E. J. Adjacent codons act in concert to modulate translation efficiency in yeast. Cell 166, 679–690 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Koutmou, K. S. et al. Ribosomes slide on lysine-encoding homopolymeric A stretches. eLife 4, e05534 (2015).

    PubMed Central  Google Scholar 

  47. Brown, A., Baird, M. R., Yip, M. C., Murray, J. & Shao, S. Structures of translationally inactive mammalian ribosomes. eLife 7, pii: e40486 (2018).

    Google Scholar 

  48. Schmeing, T. M. & Ramakrishnan, V. What recent ribosome structures have revealed about the mechanism of translation. Nature 461, 1234–1242 (2009).

    CAS  PubMed  Google Scholar 

  49. Dever, T. E. & Ivanov, I. P. Roles of polyamines in translation. J. Biol. Chem. 293, 18719–18729 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mandal, S., Mandal, A., Johansson, H. E., Orjalo, A. V. & Park, M. H. Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells. Proc. Natl Acad. Sci. USA 110, 2169–2174 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Atkins, J. F., Lewis, J. B., Anderson, C. W. & Gesteland, R. F. Enhanced differential synthesis of proteins in a mammalian cell-free system by addition of polyamines. J. Biol. Chem. 250, 5688–5695 (1975).

    CAS  PubMed  Google Scholar 

  52. Feng, Q. & Shao, S. In vitro reconstitution of translational arrest pathways. Methods 137, 20–36 (2018).

    CAS  PubMed  Google Scholar 

  53. Sothiselvam, S. et al. Binding of macrolide antibiotics leads to ribosomal selection against specific substrates based on their charge and size. Cell Rep. 16, 1789–1799 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mignon, P., Loverix, S., Steyaert, J. & Geerlings, P. Influence of the π–π interaction on the hydrogen bonding capacity of stacked DNA/RNA bases. Nucleic Acids Res. 33, 1779–1789 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tang, T. T. L., Stowell, J. A. W., Hill, C. H. & Passmore, L. A. The intrinsic structure of poly(A) RNA determines the specificity of Pan2 and Caf1 deadenylases. Nat. Struct. Mol. Biol. 26, 433–442 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wilson, D. N., Arenz, S. & Beckmann, R. Translation regulation via nascent polypeptide-mediated ribosome stalling. Curr. Opin. Struct. Biol. 37, 123–133 (2016).

    CAS  PubMed  Google Scholar 

  57. Shalgi, R. et al. Widespread regulation of translation by elongation pausing in heat shock. Mol. Cell 49, 439–452 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, B., Han, Y. & Qian, S.-B. Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. Mol. Cell 49, 453–463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Cymer, F. & von Heijne, G. Cotranslational folding of membrane proteins probed by arrest-peptide–mediated force measurements. Proc. Natl Acad. Sci. USA 110, 14640–14645 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Butkus, M. E., Prundeanu, L. B. & Oliver, D. B. Translocon ‘pulling’ of nascent SecM controls the duration of its translational pause and secretion-responsive secA regulation. J. Bacteriol. 185, 6719–6722 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002).

    CAS  PubMed  Google Scholar 

  62. Agirrezabala, X. et al. Ribosome rearrangements at the onset of translational bypassing. Sci. Adv. 3, e1700147 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Sharma, A., Mariappan, M., Appathurai, S. & Hegde, R. S. In vitro dissection of protein translocation into the mammalian endoplasmic reticulum. Methods Mol. Biol. 619, 339–363 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. Bénas, P. et al. The crystal structure of HIV reverse-transcription primer tRNA(Lys,3) shows a canonical anticodon loop. RNA 6, 1347–1355 (2000).

    PubMed  PubMed Central  Google Scholar 

  68. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS  PubMed  Google Scholar 

  70. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    CAS  PubMed  Google Scholar 

  71. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  72. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Tang and L. Passmore for useful discussions, help with circular dichroism measurements and sharing data before publication; J. Grimmett and T. Darling for advice, data storage and high-performance computing; M. Daly, G. Cannone and J. Brown for technical support; S. Scheres, T. Nakane and P. Emsley for advice; the MRC Laboratory of Molecular Biology Electron Microscopy Facility for access and support of electron microscopy, sample preparation and data collection; Diamond for access and support of the Cryo-EM facilities at the UK national Electron Bio-Imaging Centre (eBIC) (proposal no. EM17434-53, funded by the Wellcome Trust, MRC and BBSRC); Z. Yang for data collection support at eBIC; and Hegde and Ramakrishnan laboratory members for useful discussions. This work was supported by the UK Medical Research Council (grant no. MC_UP_A022_1007 to R.S.H. and grant no. MC_U105184332 to V.R.); a Wellcome Trust Senior Investigator award (grant no. WT096570), the Agouron Institute and the Louis-Jeantet Foundation (to V.R.); a Bio-X graduate fellowship (to J.C.); and the NIH (grant nos. GM51266 and GM113078 to J.D.P.).

Author information

Authors and Affiliations

Authors

Contributions

V.C. generated the cryo-EM structures, built and interpreted molecular models and wrote the first draft of the manuscript. S.J. prepared and characterized samples for structure determination, performed biochemical and cell assays of stalling and interpreted these data. J.C. and J.D.P. provided supporting data that corroborated the stalling model. A.B. and S.S. produced an initial stalled ribosome structure that seeded the project. V.R. provided overall project guidance and helped interpret the structure. R.S.H. conceived the project, provided overall project guidance, helped interpret the findings and wrote later drafts of the manuscript. All authors contributed to manuscript editing.

Corresponding author

Correspondence to Ramanujan S. Hegde.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Anke Sparmann was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Additional characterization of ribosome stalling in vitro.

a, A second example of nascent chain products resulting from in vitro translation of iterated AAG or AAA lysine codons in human cell lysate, as in Fig. 1a. The positions of nascent chain products containing 4, 9, or 12 lysine residues are indicated. b, Analysis of iterated AAG versus AAA codons for stalling in rabbit reticulocyte lysate. The translation reaction was performed for 20 min after which the proportion of stalled products was assessed by the relative amounts of peptidyl-tRNA versus full length polypeptide. The ‘background’ of ~ 20% peptidyl-tRNA even in the absence of stalling is due to failed termination at the stop codon, which is located within a few nucleotides of the 3’ end of the mRNA. Later in vitro stalling experiments with a longer 3’UTR that protrudes outside the mRNA channel showed improved termination efficiency (~ 95%). An overly short 3’UTR presumably makes the mRNA more flexible in the mRNA channel and less able to recruit eRF1. Multiple experiments such as this one were quantified to produce the graph shown in Fig. 1b. c, Time course of the appearance of full length (FL) product for constructs containing the indicated number of iterated AAG or AAA codons. Translation was synchronized by first pausing the ribosome at a run of rare leucine codons just preceding the poly-basic encoding sequence, then restarting translation at time 0 by addition of tRNA. The mean ± SEM for each time point calculated from two experiments are plotted.

Source data

Extended Data Fig. 2 Cryo-EM analysis of ribosomes stalled on poly(A).

a, Representative micrograph of poly(A)-stalled ribosomes used for single particle analysis. Scale bar is 50 nm. b, Data processing scheme used for structure determination in Relion 3.0. 3D classification reveals that ~90% of active ribosomes are in the canonical state with P/P tRNA while ~10% are seen in the rotated state with A/P and P/E hybrid state tRNAs. The majority of the rotated state ribosomes also contain density for a preceding ribosome and therefore represent ribosomes that have collided with a poly(A)-stalled ribosome. c, Fourier shell correlation (FSC) curve of the final map illustrating an overall resolution of 2.8 Å.

Extended Data Fig. 3 Characterization of cryo-EM map.

a, Local resolution of the poly(A)-stalled ribosome sliced through the center. The positions of key elements are indicated. PTC: peptidyl-transferase center. Inset (right) highlights the high local resolution at the PTC and decoding center. b, Slices through the density map at the plane of the polypeptide exit tunnel (left) and mRNA channel (right). Continuous nascent chain density corresponding to a mixture of poly-Lys lengths and Cα positions is contoured at a different level to the rest of the map and is shown in magenta, and mRNA density is shown in red. The P site tRNA is green, 40 S subunit in yellow, and 60 S subunit in light blue.

Extended Data Fig. 4 Experimental EM density for P-site Lys-tRNALys,3.

Map-to-model fits for the P-site Lys-tRNA(lys,3) with the AAA codon of the mRNA in the P site and the first amino acid (lysine) of the nascent polypeptide. Base modifications at positions 34 and 37 of the tRNA are shown within the cryo-EM density.

Extended Data Fig. 5 Views of the mRNA density in the EM map of the poly(A)-stalled ribosome.

The density map is sliced through the ribosome in a plane that reveals the decoding center and shows the mRNA within the small subunit. The large and small subunits (blue and yellow, respectively), P-site tRNA (green) and mRNA (red) are colored. The inset shows a zoomed in region of the mRNA channel, illustrating that the poly(A) mRNA is ordered through most of the channel. The bottom panel shows the mRNA density in the P- and A-sites in the final refined and sharpened map. The mRNA is well ordered in the P-site due to base-pairing with the P-site tRNA, and ordered in the A-site due to stabilizing interactions with rRNA as shown in Fig. 3.

Extended Data Fig. 6 Guanosine interrupts the intrinsic helical propensity of poly(A).

Circular dichroism (CD) spectra of AAAAAA (red), AAGAAG (blue) and AAGGAA (green) RNA oligonucleotides are plotted. These spectra are averaged from 9 independent measurements performed on the same samples. The AAAAAA oligo displays a CD signature characteristic for the helical conformation of poly(A), as described previously 52. Introduction of guanosines significantly disrupts this helical structure.

Extended Data Fig. 7 Comparison of peptidyl-tRNA geometry in different mammalian RNC structures.

Shown are the EM density maps for the peptidyl-tRNA region at the PTC for the indicated structures. The fitted models are shown for the poly(A)-stalled ribosome and the RNC stalled at the stop codon with a dominant-negative eRF1AAQ mutant (PDB code 5LZV). The 5LZV RNC is in a geometry competent for peptidyl-transfer (or in this case, peptide release by eRF1). The structure from the didemnin-B stalled RNCs contains a mixture of nascent chains stalled at different positions. Thus, the nascent chain density represents an average of a variety of peptidyl-tRNAs. Note that the nascent chain model from 5LZV fits well into the density map, indicating that the majority of peptidyl-tRNAs assume this configuration during active elongation. The geometry for the poly(A) peptidyl-tRNA is unambiguously different from this optimal geometry. Lys and Val refer to the lysine and valine side chains of modeled nascent chains. The asterisks indicate density for side chains that are not shown.

Supplementary information

Source data

Source Data Fig. 1

Full uncropped gel for Fig. 1a

Source Data Fig. 5

Full uncropped gel for Fig. 5b

Source Data Fig. 6

Example of raw flow cytometry data for Fig. 6c

Source Data Extended Data Fig. 1

Full uncropped gels for Extended Data Fig. 1a and 1b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasekaran, V., Juszkiewicz, S., Choi, J. et al. Mechanism of ribosome stalling during translation of a poly(A) tail. Nat Struct Mol Biol 26, 1132–1140 (2019). https://doi.org/10.1038/s41594-019-0331-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0331-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing