Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cryo-EM structure of a human prion fibril with a hydrophobic, protease-resistant core

Abstract

Self-templating assemblies of the human prion protein are clinically associated with transmissible spongiform encephalopathies. Here we present the cryo-EM structure of a denaturant- and protease-resistant fibril formed in vitro spontaneously by a 9.7-kDa unglycosylated fragment of the human prion protein. This human prion fibril contains two protofilaments intertwined with screw symmetry and linked by a tightly packed hydrophobic interface. Each protofilament consists of an extended beta arch formed by residues 106 to 145 of the prion protein, a hydrophobic and highly fibrillogenic disease-associated segment. Such structures of prion polymorphs serve as blueprints on which to evaluate the potential impact of sequence variants on prion disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PrP domain architecture and structure of the rPrPRes fibril, the protease-resistant core of rPrP 94–178.
Fig. 2: Secondary structure of rPrPRes in contrast to that of PrPC and topology of the rPrPRes protofilament.
Fig. 3: Stability of the core of rPrPRes.
Fig. 4: Compatibility of sequence variants at key residues in rPrPRes.

Similar content being viewed by others

Data availability

EM maps and atomic coordinates for rPrP 106–145 have been deposited in the EMDB and wwPDB as EMD-20900 and PDB 6UUR, respectively; atomic coordinates and structure factors have been deposited in the wwPDB for PrP 113–118 (PDB 6PQ5) and PrP119–124 (PDB 6PQA).

References

  1. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wasmer, C. et al. Amyloid fibrils of the HET-s(218–289) prion form a β solenoid with a triangular hydrophobic core. Science 319, 1523–1526 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Yuan, A. H. & Hochschild, A. A bacterial global regulator forms a prion. Science 355, 198–201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cobb, N. J. & Surewicz, W. K. Prion diseases and their biochemical mechanisms. Biochemistry 48, 2574–2585 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Riek, R. et al. NMR structure of the mouse prion protein domain PrP(121–231). Nature 382, 180–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Diaz-Espinoza, R. & Soto, C. High-resolution structure of infectious prion protein: the final frontier. Nat. Struct. Mol. Biol. 19, 370–377 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wille, H. & Requena, J. R. The structure of PrPSc prions. Pathogens 7, E20 (2018).

    Article  PubMed  CAS  Google Scholar 

  8. Surewicz, W. K. & Apostol, M. I. in Prion Proteins (ed. Tatzelt, J.) 135–167 (Springer Berlin Heidelberg, 2011).

  9. Caughey, B. & Lansbury, P. T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Rodriguez, J. A., Jiang, L. & Eisenberg, D. S. Toward the atomic structure of PrPSc. Cold Spring Harb. Perspect. Biol. 9, a031336 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wille, H. et al. Structural studies of the scrapie prion protein by electron crystallography. Proc. Natl Acad. Sci. USA 99, 3563–3568 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prusiner, S. B., Scott, M. R., DeArmond, S. J. & Cohen, F. E. Prion protein biology. Cell 93, 337–348 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Collins, S. J., Lawson, V. A. & Masters, C. L. Transmissible spongiform encephalopathies. Lancet 363, 51–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Prusiner, S. B., Groth, D., Serban, A., Stahl, N. & Gabizon, R. Attempts to restore scrapie prion infectivity after exposure to protein denaturants. Proc. Natl Acad. Sci. USA 90, 2793–2797 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Caughey, B., Raymond, G. J., Kocisko, D. A. & Lansbury, P. T. Scrapie infectivity correlates with converting activity, protease resistance, and aggregation of scrapie-associated prion protein in guanidine denaturation studies. J. Virol. 71, 4107–4110 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McKinley, M. P., Bolton, D. C. & Prusiner, S. B. A protease-resistant protein is a structural component of the scrapie prion. Cell 35, 57–62 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. Rubenstein, R. et al. Detection of scrapie-associated fibril (SAF) proteins using anti-SAF antibody in non-purified tissue preparations. J. Gen. Virol. 67(Pt.4), 671–681 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Silveira, J. R. et al. The most infectious prion protein particles. Nature 437, 257–261 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bolton, D. C., Meyer, R. K. & Prusiner, S. B. Scrapie PrP 27-30 is a sialoglycoprotein. J. Virol. 53, 596–606 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pan, K. M. et al. Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins. Proc. Natl Acad. Sci. 90, 10962–10966 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nguyen, J. T. et al. X-ray diffraction of scrapie prion rods and PrP peptides. J. Mol. Biol. 252, 412–422 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Vázquez-Fernández, E. et al. The structural architecture of an infectious mammalian prion using electron cryomicroscopy. PLoS Pathog. 12, e1005835 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gallagher-Jones, M. et al. Sub-ångström cryo-EM structure of a prion protofibril reveals a polar clasp. Nat. Struct. Mol. Biol. 25, 131–134 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sawaya, M. R. et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Wan, W. et al. Structural studies of truncated forms of the prion protein PrP. Biophys. J. 108, 1548–1554 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kocisko, D. A. et al. Cell-free formation of protease-resistant prion protein. Nature 370, 471 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Choi, J.-K. et al. Amyloid fibrils from the N-terminal prion protein fragment are infectious. Proc. Natl Acad. Sci. USA 113, 13851–13856 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Taraboulos, A. et al. Acquisition of protease resistance by prion proteins in scrapie-infected cells does not require asparagine-linked glycosylation. Proc. Natl Acad. Sci. USA 87, 8262–8266 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, Z. et al. De novo generation of infectious prions with bacterially expressed recombinant prion protein. FASEB J. 27, 4768–4775 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wille, H. et al. Natural and synthetic prion structure from X-ray fiber diffraction. Proc. Natl Acad. Sci. USA 106, 16990–16995 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Theint, T. et al. Species-dependent structural polymorphism of Y145Stop prion protein amyloid revealed by solid-state NMR spectroscopy. Nat. Commun. 8, 753 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Theint, T. et al. Structural studies of amyloid fibrils by paramagnetic solid-state nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 140, 13161–13166 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Terry, C. et al. Structural features distinguishing infectious ex vivo mammalian prions from non-infectious fibrillar assemblies generated in vitro. Sci. Rep. 9, 376 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Terry, C. et al. Ex vivo mammalian prions are formed of paired double helical prion protein fibrils. Open Biol. 6, 160035 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Prusiner, S. B., Groth, D. F., Bolton, D. C., Kent, S. B. & Hood, L. E. Purification and structural studies of a major scrapie prion protein. Cell 38, 127–134 (1984).

    Article  CAS  PubMed  Google Scholar 

  37. Stahl, N. et al. Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32, 1991–2002 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Walsh, P., Simonetti, K. & Sharpe, S. Core structure of amyloid fibrils formed by residues 106–126 of the human prion protein. Structure 17, 417–426 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Jobling, M. F. et al. The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106–126. J. Neurochem. 73, 1557–1565 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Biasini, E. et al. The hydrophobic core region governs mutant prion protein aggregation and intracellular retention. Biochem. J. 430, 477–486 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Norstrom, E. M. & Mastrianni, J. A. The AGAAAAGA palindrome in PrP is required to generate a productive PrPSc-PrPC complex that leads to prion propagation. J. Biol. Chem. 280, 27236–27243 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Aucoin, D. et al. Protein-solvent interfaces in human Y145Stop prion protein amyloid fibrils probed by paramagnetic solid-state NMR spectroscopy. J. Struct. Biol. 206, 36–42 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Asante, E. A. et al. Inherited prion disease A117V is not simply a proteinopathy but produces prions transmissible to transgenic mice expressing homologous prion protein. PLoS Pathog. 9, e1003643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rodriguez, M.-M. et al. A novel mutation (G114V) in the prion protein gene in a family with inherited prion disease. Neurology 64, 1455–1457 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Collinge, J., Palmer, M. S. & Dryden, A. J. Genetic predisposition to iatrogenic Creutzfeldt–Jakob disease. Lancet 337, 1441–1442 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Fitzpatrick, A. W. P. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547, 185–190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Falcon, B. et al. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 568, 420–423 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Asante, E. A. et al. A naturally occurring variant of the human prion protein completely prevents prion disease. Nature 522, 478–481 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zheng, Z. et al. Structural basis for the complete resistance of the human prion protein mutant G127V to prion disease. Sci. Rep. 8, 13211 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zhou, S., Shi, D., Liu, X., Liu, H. & Yao, X. Protective V127 prion variant prevents prion disease by interrupting the formation of dimer and fibril from molecular dynamics simulations. Sci. Rep. 6, 21804 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sabareesan, A. T. & Udgaonkar, J. B. The G126V mutation in the mouse prion protein hinders nucleation-dependent fibril formation by slowing initial fibril growth and by increasing the critical concentration. Biochemistry 56, 5931–5942 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Morales, R. Prion strains in mammals: different conformations leading to disease. PLoS Pathog. 13, e1006323 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Tattum, M. H. et al. Elongated oligomers assemble into mammalian PrP amyloid fibrils. J. Mol. Biol. 357, 975–985 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Ghetti, B. et al. Vascular variant of prion protein cerebral amyloidosis with tau-positive neurofibrillary tangles: the phenotype of the stop codon 145 mutation in PRNP. Proc. Natl Acad. Sci. USA 93, 744–748 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Piccardo, P. et al. Prion proteins with different conformations accumulate in Gerstmann-Sträussler-Scheinker disease caused by A117V and F198S mutations. Am. J. Pathol. 158, 2201–2207 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sim, V. L. & Caughey, B. Ultrastructures and strain comparison of under-glycosylated scrapie prion fibrils. Neurobiol. Aging 30, 2031–2042 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Li, Q. et al. Structural attributes of mammalian prion infectivity: insights from studies with synthetic prions. J. Biol. Chem. 293, 18494–18503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).

    Article  CAS  PubMed  Google Scholar 

  59. Gao, Y., Tran, P., Petkovic-Duran, K., Swallow, T. & Zhu, Y. Acoustic micromixing increases antibody-antigen binding in immunoassays. Biomed. Microdevices 17, 79 (2015).

    Article  PubMed  CAS  Google Scholar 

  60. Nagapudi, K., Umanzor, E. Y. & Masui, C. High-throughput screening and scale-up of cocrystals using resonant acoustic mixing. Int. J. Pharm. 521, 337–345 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Otwinowski, Z., Minor, W., Borek, D. & Cymborowski, M. in International Tables for Crystallography Volume F. Crystallography of Biological Macromolecules 2nd edn. (eds. Rossman, M. G. et al.) Ch. 11.4 (Wiley, 2012).

  63. Leslie, A. G. W. & Powell, H. R. in Evolving Methods for Macromolecular Crystallography (eds. Read, R. J. & Sussman, J. L.) 41–51 (Springer Netherlands, 2007).

  64. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hilz, H., Wiegers, U. & Adamietz, P. Stimulation of proteinase K action by denaturing agents: application to the isolation of nucleic acids and the degradation of ‘masked’ proteins. Eur. J. Biochem. 56, 103–108 (1975).

    Article  CAS  PubMed  Google Scholar 

  68. Carragher, B. et al. Leginon: an automated system for acquisition of images from vitreous ice specimens. J. Struct. Biol. 132, 33–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. He, S. Helical Reconstruction in RELION. Doctoral thesis, Univ. of Cambridge (2018).

  74. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liberta, F. et al. Cryo-EM fibril structures from systemic AA amyloidosis reveal the species complementarity of pathological amyloids. Nat. Commun. 10, 1104 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Delano, W. The PyMOL Molecular Graphics System (Schrödinger LLC).

  77. Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinforma. Oxf. Engl 26, 689–691 (2010).

    Article  CAS  Google Scholar 

  78. Eisenberg, D. & McLachlan, A. D. Solvation energy in protein folding and binding. Nature 319, 199–203 (1986).

    Article  CAS  PubMed  Google Scholar 

  79. Eisenberg, D., Wesson, M. & Yamashita, M. Interpretation of protein folding and binding with atomic solvation parameters. Chemica Scr. 29A, 217–221 (1989).

    CAS  Google Scholar 

  80. Koehl, P. & Delarue, M. Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy. J. Mol. Biol. 239, 249–275 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Cascio (UCLA), H. McFarlane (UCLA) and C. Sigurdson (UCSD). This work is supported by National Science Foundation (NSF) Grants DMR-1548924 and DBI-1338135, DOE Grant DE-FC02-02ER63421 and National Institutes of Health (NIH) grants R35 GM128867, AG054022 and 1U24GM116792, as well as NIH instrumentation grants 1S10OD016387-01, 1S10RR23057 and 1S10OD018111, which support our use of instruments at the Electron Imaging Center for NanoMachines and CNSI at UCLA. C.G. was funded by the Ruth L. Kirschstein NRSA GM007185 (NIH T32 Cellular and Molecular Biology Training Grant, UCLA) and is now funded by the Ruth L. Kirschstein Predoctoral Individual NRSA, 1F31 AI143368. J.A.R. is supported as a Searle Scholar, a Pew Scholar and a Beckman Young Investigator. D.S.E is supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

C.G. and R.B. produced, evaluated and optimized recombinant PrP fibril preparations. C.G. and P.G. performed electron microscopy. M.A. and M.R.S. performed X-ray structure determination of PrP segments. C.G. and C.W.S. selected particles for analysis. C.G., P.G. and M.G.J. performed fibril reconstruction. C.G. and M.R.S. built the fibril model. C.G., P.G., M.R.S., M.G.J., C.W.S., R.B., M.A., Z.H.Z., D.S.E. and J.A.R. critically analyzed and provided feedback on data. C.G. and J.A.R. wrote the manuscript, with input from all authors.

Corresponding author

Correspondence to Jose A. Rodriguez.

Ethics declarations

Competing interests

D.S.E. is SAB chair and an equity holder in ADRx.

Additional information

Peer review information Inês Chen was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Summary sentence: The cryo-EM structure of a denaturant- and protease-resistant human prion fibril shows a parallel, in-register assembly with a hydrophobic core.

Extended data

Extended Data Fig. 1 Production, isolation and characterization of rPrP94–178 fibrils.

a, Purification of untagged human PrP94–178. Samples collected during size exclusion chromatography of PrP94–178 were run on a 4–12 % SDS-PAGE gel corresponding to labeled peaks b, Gel lanes left to right: 1. Pre-stained protein ladder (Thermo), 2. Post-induction fraction, 3. Solubilized material from inclusion bodies, 4. Void fraction (A) from (a), 5. Peak (B) from (a), 6. Peak (C) from (a) containing 9.7 kDa monomeric rPrP94–178, 7–9. Peaks D-F from (a) containing excess guanidine or other UV active small eluates. c, Mass spectrum showing most abundant peaks correspond to ions with an extracted molecular weight that matches rPrP94–178. d, Representative micrographs of a heterogeneous mix of untreated fibrils (left) in Growth Buffer; promising filaments (black arrows) and disordered, clumped, or amorphous material (blue arrows). Adjacent images are of filaments treated with 1:10 molar ratio proteinase K:rPrP94–178 monomer and bath sonicated for 10 minutes. Proteinase K-treated and sonicated filaments exchanged into water in a frozen-hydrated state (third column, top) or 2 % SDS (third column, bottom). Representative image of Proteinase K, sonication, and SDS treated filaments used for high-resolution imaging and reconstruction (right). Scale bars, 200 nm. Scale bar for high-resolution image (right) 50 nm.

Extended Data Fig. 2 Partial protease digestion of rPrP94–178 fibrils.

a, Plots of incubation time versus nephelometry units as a measure of insoluble character in fibril suspensions treated with proteinase K compared to proteinase K only and buffer controls. b, Representative electron micrographs of each sample in panel (a) before proteinase K digestion at the start of the incubation period. This image of fibrils is the same as that shown in Extended Data Fig. 1d. c, Representative micrographs of each sample in Panel (a) after the 24-hour incubation period. All scale bars are 200 nm.

Extended Data Fig. 3 Classification of major species of protease-resistant rPrP94–178 fibrils.

a, Final 2D class averages from the major species comprising 71 % of defined segments using a 535 Å box with a 530 Å mask (left) or 428 Å (400 pixel) box with a 400 Å mask (right). b, A composite image (left) formed by stitching of 2D class averages with the small box shown in (a), agrees with a composite image (right) formed by class averages obtained using a box size encompassing a full crossover distance in (a). The crossover distance and full pitch are both marked. c, Comparison between a 2D class (enlarged view of boxed class in (a)), the map backprojection, and model backprojection with accompanying Fourier transforms below. d, Slice through the 3D density with dimensions of the ordered region and surrounding diffuse density noted.

Extended Data Fig. 4 2D classification of minor morphological populations formed by rPrP94–178.

a, Stain-embedded, Proteinase K and sonication treated fibrils show several minor populations of ribbon-like polymorphs (white arrows), including wide filaments with regions that abruptly stop (red arrows). These morphologies remain a minor species after vitrification in 2 % SDS alongside the major twisted species (single example black arrow) (b) A 2D classification round selecting for minor species results in 2D classes that make up 29 % (75,860 segments) of total particles sorted into defined classes (c) with 2.1% of the total segments across major and minor populations (~6000 particles) being sorted into classes that resemble thick ribbons with columns of alternating electron dense and poor material (stars). Additional 2D classification of segments that did not sort into thick ribbon classes (d) revealed several classes containing high-resolution information, in some classes even revealing 4.8 Å strand separation. The 16 best looking classes are shown and make up 62 % (47,479 segments) of the particles shown in (c). 3D reconstruction of these filaments was unsuccessful. A magnified view of select classes from (c) and (d) show the range of fibril widths observed (e) Scalebar in (a) 200 nm, in (b) 50 nm.

Extended Data Fig. 5 Agreement of rPrP106–145 model with core density in rPrPRes.

a, Fourier Shell Correlation (FSC) between half-maps (blue) and the map and model (green) with resolutions at FSC = 0.5 (black dotted line) and 0.143 (gray dotted line) noted. b, Agreement of turn region with density looking down the fibril axis and (c) a side view of the same region shows clear strand separation. d, Overall fit of model into density. e, Magnified view of protofilament interface showing spacing between backbones at the center of the interface is at the most tightly spaced region between G114 of one chain and G119 of its mate. f, Magnified view of linchpin region with inferred salt bridge between residues H111 and D144 that seal off the interior of each chain and a side view (g) of the same region showing 4.8 Å separation between strands.

Extended Data Fig. 6 Structural agreement of hexapeptide prion zipper structures to rPrPRes.

a, ZipperDB26 profile of the segment encoding for rPrPRes. Bars extending below the line represent hexapeptides predicted to form steric zippers. Peptides with crystal structures aligned to the fibril model are boxed. Two of these were previously published27,28. Alignment of crystal structures 119GAVVGG124 (b) 113AGAAAA118 (c) 127GYMLGS132 (e) and 138IIHFGS143 (f) with rPrPRes (d) Symmetry mates in plane, all atom, and backbone (parentheses) RMSD values against rPrPRes are shown (g) Sequence alignment for species of common interest to prion disease. Darker blues correlates with more variability, loosely defined as more residue mismatches among the species compared, and mapping of these residues onto rPrPRes h, Hexapeptide structure for muPrP137–142 (mouse numbering) is compatible with rPrPRes (i) while shPrP138–143 is not (j).

Extended Data Fig. 7 Molecular contacts at the core of rPrPRes.

a, Cartoon representation of one protofilament with three stacked chains highlighting outer (yellow) and inner (blue) sheets. Stick representation of stacked inner (b) and outer (c) sheets with inferred hydrogen bonding networks based on refinement giving weight to standard beta sheet geometry, favored Ramachandran angles, and map to model fit. Residues where geometry deviated during refinement to break backbone hydrogen bonds are noted in blue text. d, Side view highlighting a favorable salt bridge between H111 and D144 and the same region rotated to show the interaction looking down the fiber axis (e).

Extended Data Fig. 8 Alignment of fast-relaxed mutant sequences to rPrPRes.

a, Left: Alignment of eight chains of the model (gray) to the same number of chains of a fast-relaxed model produced in PyRosetta (green) along with magnified views with sidechains in the turn region (center) and the protofilament interface (right). b, Eight chains of fast relaxed G114V mutant (left) along with magnified view of the protofilament interface near the mutation site (red arrow). The same set of three views are also shown for A117V (c) G127V (d) and M129V (e) mutants or polymorphisms.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glynn, C., Sawaya, M.R., Ge, P. et al. Cryo-EM structure of a human prion fibril with a hydrophobic, protease-resistant core. Nat Struct Mol Biol 27, 417–423 (2020). https://doi.org/10.1038/s41594-020-0403-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-020-0403-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing