Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Fit-free analysis of fluorescence lifetime imaging data using the phasor approach

Abstract

Fluorescence lifetime imaging microscopy (FLIM) is used in diverse disciplines, including biology, chemistry and biophysics, but its use has been limited by the complexity of the data analysis. The phasor approach to FLIM has the potential to markedly reduce this complexity and at the same time provide a powerful visualization of the data content. Phasor plots for fluorescence lifetime analysis were originally developed as a graphical representation of excited-state fluorescence lifetimes for in vitro systems. The method's simple mathematics and specific rules avoid errors and confusion common in the study of complex and heterogeneous fluorescence. In the case of FLIM, the phasor approach has become a powerful method for simple and fit-free analyses of the information contained in the many thousands of pixels constituting an image. At present, the phasor plot is used not only for FLIM, but also for hyperspectral imaging, wherein phasors provide an unprecedented understanding of heterogeneous fluorescence. Undoubtedly, phasor plots will be increasingly important in the future analysis and understanding of FLIM and hyperspectral confocal imaging. This protocol presents the principle of the method and guides users through one of the popular interfaces for FLIM phasor analysis, namely, the SimFCS software. Implementation of the analysis takes only minutes to complete for a dataset containing hundreds of files.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The reciprocity principle using the phasor approach.
Fig. 2: Expected position for fluorescence lifetimes in the phasor plot.
Fig. 3: Overview of protocol.
Fig. 4: Hardware connection of the FLIMbox.
Fig. 5: TCSPC versus FLIMBox data acquisition.
Fig. 6: Median filtering in the phasor approach to FLIM.
Fig. 7: Calibration of the phasor plot using a fluorescent standard or scattering sample.
Fig. 8: Phasor analysis of metabolism on the basis of free and enzyme-bound NADH FLIM data.
Fig. 9: Different FRET trajectories for increasing FRET efficiencies.
Fig. 10: Examples of the analysis of biosensor–FRET activity in cells by the phasor approach.
Fig. 11: Movement of the phasor plot based on addition of unmodulated light to calculate absolute concentration.
Fig. 12: Ion concentration and pH determination by the phasor plot approach.

Similar content being viewed by others

References

  1. Stringari, C. et al. Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc. Natl. Acad. Sci. USA 108, 13582–13587 (2011).

    Article  PubMed  Google Scholar 

  2. Hinde, E., Digman, M. A., Hahn, K. M. & Gratton, E. Millisecond spatiotemporal dynamics of FRET biosensors by the pair correlation function and the phasor approach to FLIM. Proc. Natl. Acad. Sci. USA 110, 135–140 (2013).

    Article  PubMed  Google Scholar 

  3. Hinde, E., Digman, M. A., Welch, C., Hahn, K. M. & Gratton, E. Biosensor Forster resonance energy transfer detection by the phasor approach to fluorescence lifetime imaging microscopy. Microsc. Res. Tech. 75, 271–281 (2012).

    Article  PubMed  Google Scholar 

  4. Battisti, A. et al. Intracellular pH measurements made simple by fluorescent protein probes and the phasor approach to fluorescence lifetime imaging. Chem. Commun. 48, 5127 (2012).

    Article  CAS  Google Scholar 

  5. Celli, A. et al. The epidermal Ca2+ gradient: measurement using the phasor representation of fluorescent lifetime imaging. Biophys. J. 98, 911–921 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ma, N., Digman, M. A., Malacrida, L. & Gratton, E. Measurements of absolute concentrations of NADH in cells using the phasor FLIM method. Biomed. Opt. Express 7, 2441–2452 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Harvey, B. J. & Levitus, M. Nucleobase-specific enhancement of Cy3 fluorescence. J. Fluoresc. 19, 443–448 (2009).

    Article  PubMed  CAS  Google Scholar 

  8. Malacrida, L., Jameson, D. M. & Gratton, E. A multidimensional phasor approach reveals LAURDAN photophysics in NIH-3T3 cell membranes. Sci. Rep. 7, 9215 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Datta, R., Heylman, C., George, S. C. & Gratton, E. Label-free imaging of metabolism and oxidative stress in human induced pluripotent stem cell-derived cardiomyocytes. Biomed. Opt. Express 7, 1690 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Datta, R., Alfonso-García, A., Cinco, R. & Gratton, E. Fluorescence lifetime imaging of endogenous biomarker of oxidative stress. Sci. Rep. 5, 9848 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ranjit, S. R. et al. Measuring the effect of a western diet on liver tissue architecture by FLIM autofluorescence and harmonic generation microscopy. Biomed. Opt. Express 8, 371–378 (2017).

    Google Scholar 

  12. Weber, G. Resolution of the fluorescence lifetimes in a heterogeneous system by phase and modulation measurements. J. Phys. Chem. 85, 949–953 (1981).

    Article  CAS  Google Scholar 

  13. Jameson, D. M., Gratton, E. & Hall, R. D. The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry. Appl. Spectrosc. Rev. 20, 55–106 (1984).

    Article  CAS  Google Scholar 

  14. Verveer, P. J., Squire, A. & Bastiaens, P. I. Global analysis of fluorescence lifetime imaging microscopy data. Biophys. J. 78, 2127–2137 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Pelet, S., Previte, M. J. R., Laiho, L. H. & So, P. T. C. A fast global fitting algorithm for fluorescent lifetime imaging microscopy based on image segmentation. Biophys. J. 87, 2807–2817 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Jameson, D. M. Introduction to Fluorescence (CRC Press, Boca Raton, FL, 2014).

  17. O’Connor, D. & Phillps, D. Time-Correlated Single Photon Counting (Academic Press, New York, 1984).

  18. Gratton, E. in Perspectives on Fluorescence: A Tribute to Gregorio Weber (ed. Jameson, D. M.) 67–80 (Springer International Publishing, Switzerland, 2016).

  19. Arnesano, C., Santoro, Y. & Gratton, E. Digital parallel frequency-domain spectroscopy for tissue imaging. J. Biomed. Opt. 17, 0960141 (2012).

    Article  Google Scholar 

  20. Colyer, R. A., Lee, C. & Gratton, E. A novel fluorescence lifetime imaging system that optimizes photon efficiency. Microsc. Res. Tech. 71, 201–213 (2008).

    Article  PubMed  Google Scholar 

  21. Digman, M. A. & Gratton, E. in Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics (eds. Marcu, L., French, P. M. W. & Elson, D. S.) 235–248 (CRC Press, Boca Raton, FL, 2014)

  22. Kristoffersen, A. S., Erga, S. R., Hamre, B. & Frette, Ø. Testing fluorescence lifetime standards using two-photon excitation and time-domain instrumentation: Rhodamine B, coumarin 6 and lucifer yellow. J. Fluoresc. 24, 1015–1024 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chance, B. Mitochondrial NADH redox state, monitoring discovery and deployment in tissue. Methods Enzymol. 385, 361–370 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. Mayevsky, A. & Chance, B. Oxidation-reduction states of NADH in vivo: from animals to clinical use. Mitochondrion 7, 330–339 (2007).

    Article  PubMed  CAS  Google Scholar 

  25. Zhang, Z. et al. Metabolic imaging of tumors using intrinsic and extrinsic fluorescent markers. Biosens. Bioelectron. 20, 643–650 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. Bird, D. K. et al. Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res. 65, 8766–8773 (2005).

    Article  PubMed  CAS  Google Scholar 

  27. Skala, M. C. et al. In vivo multiphoton microscopy of {NADH} and {FAD} redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc. Natl. Acad. Sci. USA 104, 19494–19499 (2007).

    Article  PubMed  Google Scholar 

  28. Chance, B., Nioka, S., Warren, W. & Yurtsever, G. in Oxygen Transport to Tissue XXVI (eds. Okunieff, P., Williams, J. & Chen, Y.) 231–242 (Springer, USA, 2005).

  29. Nakashima, N., Yoshihara, K., Tanaka, F. & Yagi, K. Picosecond fluorescence lifetime of the coenzyme of D-amino acid oxidase*. J. Biol. Chem. 255, 5261–5263 (1980).

    PubMed  CAS  Google Scholar 

  30. Stringari, C., Nourse, J. L., Flanagan, L. A. & Gratton, E. Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential. PLoS ONE 7, e48014 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Aguilar-Arnal, L. et al. Spatial dynamics of SIRT1 and the subnuclear distribution of NADH species. Proc. Natl. Acad. Sci. USA 113, 12715–12720 (2016).

    Article  PubMed  CAS  Google Scholar 

  32. Valeur, B. in Molecular Fluorescence: Principles and Applications 247–272 (Wiley-VCH, Weinheim, Germany, 2001).

  33. Wallrabe, H. & Periasamy, A. Imaging protein molecules using FRET and FLIM microscopy. Curr. Opin. Biotechnol. 16, 19–27 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. DiPilato, L. M. & Zhang, J. Fluorescent protein-based biosensors: resolving spatiotemporal dynamics of signaling. Curr. Opin. Chem. Biol. 14, 37–42 (2010).

    Article  PubMed  CAS  Google Scholar 

  35. Sun, Y., Day, R. N. & Periasamy, A. Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Nat. Protoc. 6, 1324–1340 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Day, R. N., Tao, W. & Dunn, K. W. A simple approach for measuring FRET in fluorescent biosensors using two-photon microscopy. Nat. Protoc. 11, 2066–2080 (2016).

    Article  PubMed  CAS  Google Scholar 

  37. Digman, M. A., Caiolfa, V. R., Zamai, M. & Gratton, E. The phasor approach to fluorescence lifetime imaging analysis. Biophys. J. 94, L14–L16 (2008).

    Article  PubMed  CAS  Google Scholar 

  38. Kolb, D. A. & Weber, G. Quantitative demonstration of the reciprocity of ligand effects in the ternary complex of chicken heart lactate dehydrogenase with nicotinamide adenine dinucleotide and oxalate. Biochemistry 14, 4471–4476 (1975).

    Article  PubMed  CAS  Google Scholar 

  39. Jameson, D. M., Thomas, V. & Zhou, D.-M. Time-resolved fluorescence studies on NADH bound to mitochondrial malate dehydrogenase. Biochim. Biophys. Acta 994, 187–190 (1989).

    Article  PubMed  CAS  Google Scholar 

  40. Stringari, C., Sierra, R., Donovan, P. J. & Gratton, E. Label-free separation of human embryonic stem cells and their differentiating progenies by phasor fluorescence lifetime microscopy. J. Biomed. Opt. 17, 046012 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Scott, T. G., Spencer, R. D., Leonard, N. J. & Weber, G. Emission properties of NADH. Studies of fluorescence lifetimes and quantum efficiencies of NADH, AcPyADH, and simplified synthetic models. J. Am. Chem. Soc. 7302, 687–695 (1969).

    Google Scholar 

  42. Hirshfield, K. M., Toptygin, D., Packard, B. S. & Brand, L. Dynamic fluorescence measurements of two-state systems: applications to calcium-chelating probes. Anal. Biochem. 209, 209–218 (1993).

    Article  PubMed  CAS  Google Scholar 

  43. Pineda Rodó, A., Váchová, L. & Palková, Z. In vivo determination of organellar pH using a universal wavelength-based confocal microscopy approach. PLoS ONE 7, e33229 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Okabe, K. et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 3, 705 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ma, Y. et al. Phosphorescent soft salt for ratiometric and lifetime imaging of intracellular pH variations. Chem. Sci. 7, 3338–3346 (2016).

  46. Sherin, P. S. et al. Visualising the membrane viscosity of porcine eye lens cells using molecular rotors. Chem. Sci. 8, 3523–3528 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Van Den Zegel, M., Boens, N., Daems, D. & De Schryver, F. C. Possibilities and limitations of the time-correlated single photon counting technique: a comparative study of correction methods for the wavelength dependence of the instrument response function. Chem. Phys. 101, 311–335 (1986).

    Article  Google Scholar 

  48. Luchowski, R. et al. Fluorescence instrument response standards in two-photon time-resolved spectroscopy. Appl. Spectrosc. 64, 918–922 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Talbot, C. B. et al. Application of ultrafast gold luminescence to measuring the instrument response function for multispectral multiphoton fluorescence lifetime imaging. Opt. Express 19, 13848–13861 (2011).

    Article  PubMed  CAS  Google Scholar 

  50. Becker, W. Recording the instrument response function of a multiphoton FLIM system. Becker & Hickl: Application Notes http://www.becker-hickl.com/pdf/irf-mp04.pdf (2008).

  51. Wahl, M. Time-correlated single photon counting. PicoQuant: Technical Notes https://www.picoquant.com/images/uploads/page/files/7253/technote_tcspc.pdf (2014).

  52. Becker, W. The bh TCSPC Handbook (Becker & Hickl, Berlin, Germany, 2014).

  53. Štefl, M., James, N. G., Ross, J. A. & Jameson, D. M. Applications of phasors to in vitro time-resolved fluorescence measurements. Anal. Biochem. 410, 62–69 (2011).

    Article  PubMed  CAS  Google Scholar 

  54. Reinhart, G. D., Marzola, P., Jameson, D. M. & Gratton, E. A method for on-line background subtraction in frequency domain fluorometry. J. Fluoresc. 1, 153–162 (1991).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grants NIH P41-GM103540 and NIH P50-GM076516. L.M. was supported as a full-time professor at the Universidad de la República-Uruguay.

Author information

Authors and Affiliations

Authors

Contributions

S.R. and L.M. wrote the manuscript and prepared the figures. E.G. and D.M.J. wrote the introduction and corrected all preliminary documents. All data in the article were collected by S.R. and L.M.

Corresponding author

Correspondence to Enrico Gratton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

1. Stringari, C. et al. Proc. Natl. Acad. Sci. USA 108, 13582–13587 (2011) https://doi.org/10.1073/pnas.1108161108.

2. Hinde, E., Digman, M. A., Welch, C., Hahn, K. M. & Gratton, E. Microsc. Res. Tech. 75, 271–281 (2012) https://doi.org/10.1002/jemt.21054.

3. Digman, M. A., Caiolfa, V. R., Zamai, M. & Gratton, E. Biophys. J. 94, L14–L16 (2008) https://doi.org/10.1529/biophysj.107.120154.

4. Ma, N., Digman, M. A., Malacrida, L. & Gratton, E. Biomed. Opt. Express 7, 441–2452 (2016) https://doi.org/10.1364/BOE.7.002441.

Supplementary information

Combined Supplementary Information

Supplementary Figs. 1–18, Supplementary Methods and Supplementary Notes 1–6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjit, S., Malacrida, L., Jameson, D.M. et al. Fit-free analysis of fluorescence lifetime imaging data using the phasor approach. Nat Protoc 13, 1979–2004 (2018). https://doi.org/10.1038/s41596-018-0026-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0026-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics