Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Limited proteolysis–mass spectrometry reveals aging-associated changes in cerebrospinal fluid protein abundances and structures

A Publisher Correction to this article was published on 28 April 2022

This article has been updated

Abstract

Cerebrospinal fluid (CSF) proteins and their structures have been implicated in aging and neurodegenerative diseases. In the present study, we used limited proteolysis–mass spectrometry (LiP–MS) to screen for new aging-associated changes in the CSF proteome using a modified analysis. We found 38 protein groups that change in abundance with aging, predominantly immunoglobulins of the IgM subclass. We discovered six high-confidence candidates that underwent structural changes with aging, of which Kng1, Itih2, Lp-PLA2 and 14-3-3 proteins have binding partners or chemical forms known previously to change in the brains of patients with Alzheimer’s disease. Orthogonal validation by western blotting identified that the LiP–MS hit Cd5l forms a covalent complex with IgM in mouse and human CSF, the abundance of which increases with aging. In human CSF, SOMAmer probe signals for all six LiP–MS hits were associated with cognitive function and/or biomarkers of neurodegeneration, especially 14-3-3 proteins YWHAB and YWHAZ. Together, our findings show that LiP–MS can uncover age-related structural changes in CSF with relevance to neurodegeneration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LiP–MS experimental and analytical workflow.
Fig. 2: Mouse CSF protein abundance in aging.
Fig. 3: Aging-associated changes in structure revealed by LiP–TeCS.
Fig. 4: Studies on LiP–TeCS hits in human CSF.

Similar content being viewed by others

Data availability

MS data have been accepted by the ProteomeXchange Consortium via the PRIDE51 partner repository with the dataset accession no. PXD031174. All other data are available from the corresponding author upon request.

Code availability

All code relevant to this study are included as supplementary files. In addition, the code can be accessed on Zenodo at https://doi.org/10.5281/zenodo.5884992 (ref. 52).

Change history

References

  1. Reitz, C., Brayne, C. & Mayeux, R. Epidemiology of Alzheimer disease. Nat. Rev. Neurol. 7, 137–152 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Smith, L. M. & Kelleher, N. L. Proteoform: a single term describing protein complexity. Nat. Methods 10, 186–187 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kelleher, N. L. et al. How many human proteoforms are there? Nat. Chem. Biol. 14, 206–214 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sebastián-Serrano, Á., de Diego-García, L. & Díaz-Hernández, M. The neurotoxic role of extracellular tau protein. Int. J. Mol. Sci. 19, 998 (2018).

    Article  PubMed Central  Google Scholar 

  6. Bergamaschini, L. et al. Activation of the contact system in cerebrospinal fluid of patients with Alzheimer aisease. Alzheimer Dis. Assoc. Disord. 12, 102–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Nielsen, H., Palmqvist, S., Minthon, L., Londos, E. & Wennström, M. Gender-dependent levels of hyaluronic acid in cerebrospinal fluid of patients with neurodegenerative dementia. Curr. Alzheimer Res. 9, 257–266 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Nägga, K., Hansson, O., van Westen, D., Minthon, L. & Wennström, M. Increased levels of hyaluronic acid in cerebrospinal fluid in patients with vascular dementia. J. Alzheimer’s Dis. 42, 1435–1441 (2014).

    Article  Google Scholar 

  9. Fonteh, A. N. et al. Alterations in cerebrospinal fluid glycerophospholipids and phospholipase A2 activity in Alzheimer’s disease. J. Lipid Res. 54, 2884–2897 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Feng, Y. et al. Global analysis of protein structural changes in complex proteomes. Nat. Biotech. 10, 1036–1044 (2014).

    Article  Google Scholar 

  12. Piazza, I. et al. A map of protein–metabolite interactions reveals principles of chemical communication. Cell 172, 358–372 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Cappelletti, V. et al. Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ. Cell 184, 545–559 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Geiger, R. et al. l-Arginine modulates T cell metabolismm and enhances survival and anti-tumor activity. Cell 167, 829–842 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zampieri, M. et al. High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds. Sci. Transl. Med. 10, eaal3973 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Castellano, J. M. et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544, 488–492 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yousef, H. et al. Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat. Med. 25, 988–1000 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pluvinage, J. V. et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature 568, 187–192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schopper, S. et al. Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry. Nat. Protoc. 12, 2391–2410 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Ludwig, C. et al. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol. Systems Biol. 14, e8126 (2018).

    Article  Google Scholar 

  22. Smith, J. S. et al. Characterization of individual mouse cerebrospinal fluid proteomes. Proteomics 14, 1102–1106 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Statist. Appl. Genet. Mol. Biol. 4, 17 (2005).

    Article  Google Scholar 

  24. Morawski, M. et al. ECM in brain aging and dementia. Prog. Brain Res. 214, 207–227 (2014).

    Article  PubMed  Google Scholar 

  25. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotech. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  26. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry–based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, B., Chambers, M. C. & Tabb, D. L. Proteomic parsimony through bipartite graph analysis improves accuracy and transparency. J. Proteome Res. 6, 3549–3557 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Borenstein, M., Hedges, L. V.;, Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-Analysis (John Wiley & Sons, 2009).

  29. Brademan, D. R., Riley, N. M., Kwiecien, N. W. & Coon, J. J. Interactive peptide spectral annotator: a versatile web-based tool for proteomic applications. Mol. Cell. Proteom. 18, S193–S201 (2019).

    Article  CAS  Google Scholar 

  30. Arai, S. et al. Obesity-associated autoantibody production requires AIM to retain the immunoglobulin M immune complex on follicular dendritic cells. Cell Rep. 3, 1187–1198 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Schmaier, A. H. The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J. Thromb. Haemost. 14, 28–39 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Sathe, G. et al. Multiplexed phosphoproteomic study of brain in patients with Alzheimer’s disease and age-matched cognitively healthy controls. OMICS 24, 216–227 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thijssen, E. H. et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat. Med. 26, 387–397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Janelidze, S. et al. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med. 26, 379–386 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Cunningham, R., Jany, P., Messing, A. & Li, L. Protein changes in immunodepleted cerebrospinal fluid from a transgenic mouse model of Alexander disease detected using mass apectrometry. J. Proteome Res. 12, 719–728 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dislich, B. et al. Label-free quantitative proteomics of mouse cerebrospinal fluid detects β-site APP cleaving enzyme (BACE1) protease substrates in vivo. Mol. Cell. Proteom. 14, 2550–2563 (2015).

    Article  CAS  Google Scholar 

  37. Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596–602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mrdjen, D. et al. High-himensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Ratliff, M. & Riley, R. L. In senescence, age-associated B cells secrete TNFa and inhibit survival of B-cell precursors. Aging Cell 12, 303–311 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Pfuhl, C. et al. Intrathecal IgM production is a strong risk factor for early conversion to multiple sclerosis. Neurology 93, e1440–e1451 (2019).

    Article  Google Scholar 

  41. Negi, N. & Das, B. K. Decoding intrathecal immunoglobulins and B cells in the CNS: their synthesis, function, and regulation. Int. Rev. Immunol. 39, 67–79 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Nesvizhskii, A. I. & Aebersold, R. Interpretation of shotgun proteomic data: the protein inference problem. Mol. Cell. Proteom. 4, 1419–1440 (2005).

    Article  CAS  Google Scholar 

  43. Jin, S., Daly, D. S., Springer, D. L. & Miller, J. H. The effects of shared peptides on protein quantitation in label-free proteomics by LC/MS/MS. J. Proteome Res. 7, 164–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Forshed, J. et al. Enhanced information output from shotgun proteomics data by protein quantification and peptide quality control (PQPQ). Mol. Cell. Proteom. 10, M111.010264 (2011).

    Article  Google Scholar 

  45. Miyazaki, T., Yamazaki, T., Sugisawa, R., Gershwin, M. E. & Arai, S. AIM associated with the IgM pentamer: attackers on stand-by at aircraft carrier. Cell. Mol. Immunol. 15, 563–574 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aasebø, E. et al. Effects of blood contamination and the rostro-caudal gradient on the human cerebrospinal fluid proteome. PLoS ONE 9, e90429 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gold, L. et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5, e15004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, C. H. et al. Stability and reproducibility of proteomic profiles measured with an aptamer-based platform. Sci. Rep. 8, 8382 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wilson, E. N. et al. Soluble TREM2 is elevated in Parkinson’s disease subgroups with elevated CSF tau. Brain 143, 932–943 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lee, S., Sun, W., Wright, F. A. & Zou, F. An improved and explicit surrogate variable analysis procedure by coefficient adjustment. Biometrika 104, 303–316 (2017).

    Article  PubMed  Google Scholar 

  51. Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Shuken, S. R.& Wyss-Coray, T. Aging-associated changes in CSF protein abundances and structures revealed by a modified LiP-MS screen. Zenodo https://doi.org/10.5281/zenodo.5884992 (2022).

Download references

Acknowledgements

We thank N. Olsson, J. Elias, D. Itzhak and S. Shi for help with LC–MS/MS setup and maintenance, P. Picotti and M. Therese-Mackmull for training in LiP–MS methodology, advice on data analysis and input on the manuscript, L. Gillet and P. Boersema for help with DIA instrument methods, U. Khan for literature searches, L. Eshun-Wilson for help with protein modeling, A. Owen, D. Kluger and A. Beyer for advice and feedback on statistics and meta-analysis, V. Henderson and the Stanford Alzheimer’s Disease Research Center team for clinical samples and data, and members of the Wyss-Coray Lab, Elias Lab and Picotti Lab for feedback and support. All raw data for MS experiments discussed in the main text were acquired at Stanford University Mass Spectrometry by R.D.L., K. Singhal, F. Liu and R. Matney. Other data necessary for the completion of the project and presented in Supplementary Information were acquired by S.R.S. in the Picotti Lab or Elias Lab on instruments owned by the Picotti Lab, Elias Lab or Wyss-Coray Lab. This work was funded by the NOMIS Foundation (T.W.-C.), the Paul F. Glenn Center for the Biology of Aging (T.W.-C.), the NIA-funded SADRC (P50 AG047366), the BioX Stanford Interdisciplinary Graduate Fellowship (S.R.S.), the Stanford Center for Molecular Analysis and Design Graduate Fellowship (S.R.S.) and the Stanford Graduate Fellowship (J.R.).

Author information

Authors and Affiliations

Authors

Contributions

S.R.S. and T.W.-C. conceptualized and initiated the project and interpreted data. S.R.S. performed LC–MS/MS maintenance. S.R.S. optimized DDA and DIA instrument methods. S.R.S. and T.I. developed the CSF collection protocol. S.R.S performed CSF collection surgeries and LiP–MS sample prep. R.D.L. performed data acquisition. S.R.S. developed the LiP–TeCS theory and concepts, implemented LiP–TeCS in R, wrote the desktop app in C# and analyzed the data. S.R.S. performed and analyzed western blots and enzyme activity assays. The SomaLogic data were processed by J.R. and P.M.L. and analyzed by J.R. E.N.W. and K.I.A. analyzed the core CSF AD biomarkers. S.R.S. wrote the manuscript. S.R.S and J.R. created the figures. S.R.S., J.R., T.I. and T.W.-C. edited and commented on the manuscript.

Corresponding author

Correspondence to Tony Wyss-Coray.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Theoretical and Computational Development of the LiP-MS Test-Control Screen (LiP-TeCS) Platform.

a, Derivation of an expression for the LiP ratio fold change (FC) in terms of concentrations and rate constants. Assumptions and details of the model are discussed in the Supplementary Information. For tryptic peptides, coefficients kcleave X are replaced by coefficients f(kcleave X) = (1 – kcleave X[PK]t) in Equations 4 and 5. b, Illustrations of protein grouping algorithms. In the indicated softwares, gray objects are omitted from the outputs to reduce redundancy and protein ID overestimation. The metapeptide method ensures that the LiP ratio numerator peptide and all peptides in the denominator PG match the same set of proteins and that all information is (matches are) reported. c, In transferrin (Tf), a single structural change (Fe binding) results in significant LiP ratio FCs at multiple sites on the same protein, shown here with yellow stars. Structural change occurs at the protein level. d, Example peptide-level LiP-MS analysis. p-value from two-sided T test, q-value from Benjamini-Hochberg correction. A PG containing multiple significant peptides by p value but not q value (blue) would not be considered a hit in the same dataset as a PG with one significant q value and numerous non-significant peptides (pink). e, Formulation of the Fisher method in this experiment. Assumptions are discussed in the Supplementary Information. f, Flow chart showing the implementation of these concepts, as well as the analysis described in Ref. 20, in a single workflow called LiP Test-Control Screen (LiP-TeCS) (black and green objects). Blue objects represent downstream interpretation. g, Screenshot of the LiP-TeCS desktop app.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, discussions of models and assumptions, and detailed protocols.

Reporting Summary

Supplementary Tables 1

Differential abundance analysis of protein groups in aging. 2. Differential abundance analysis of peptides in aging (PK samples). 3. Quantitative data for all peptides. 4. Differential LiP ratio analysis in aging. 5. Protein-level LiP–MS statistics. 6. Human cohort characteristics.

Supplementary Code 1

R scripts for performing protein–peptide matching, Spectronaut-to-MaxQuant output formatting and LiP–TeCS analysis. C# source code for LiP–TeCS desktop application.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuken, S.R., Rutledge, J., Iram, T. et al. Limited proteolysis–mass spectrometry reveals aging-associated changes in cerebrospinal fluid protein abundances and structures. Nat Aging 2, 379–388 (2022). https://doi.org/10.1038/s43587-022-00196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-022-00196-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research