Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Growth suppression by a p14ARF exon 1β adenovirus in human tumor cell lines of varying p53 and Rb status

Abstract

We have analyzed the ability of an adenoviral vector encoding the exon 1β region of the p14ARF tumor suppressor (ARF) to suppress the growth and viability of an array of tumor cell lines of various origins and varying p53 and Rb status, in order to establish the clinical potential of ARF. An important activity of ARF is regulation of p53 stability and function through binding to the mdm2 protein. By sequestering mdm2, ARF may promote growth suppression through the Rb pathway as well because mdm2 can bind to Rb and attenuate its function. Whereas the high frequency of ARF gene deletion in human cancers, accounting for some 40% of cancers overall, suggests that ARF would be a strong candidate for therapeutic application, the possible dependence of ARF activity on p53 and Rb function presents a potential limitation to its application, as these functions are often impaired in cancer. We show here that a replication-defective adenovirus, Ad1β, encoding the exon 1β region of ARF is most effective in tumor cells expressing endogenous wild-type p53. Nevertheless, Ad1β suppresses tumor cell growth and viability in vitro and in vivo, inducing G1 or G2 cell cycle arrest and cell death even in tumor cells lacking both functional Rb and p53 pathways, and independently of induction of the p53 downstream targets, p21, bax, and mdm2. These results point to an activity of ARF in human tumor cells that is independent of Rb or p53, and suggest that therapeutic applications based on ARF would have a broad clinical application in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhang Y, Xiong Y, Yarbrough WG . ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways Cell 1998 92: 725–734

    Article  CAS  PubMed  Google Scholar 

  2. Pomerantz J, Schreiber-Agus N, Liegeois NJ et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53 Cell 1998 92: 713–723

    Article  CAS  PubMed  Google Scholar 

  3. Kamijo T, Weber JD, Zambetti G et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2 Proc Natl Acad Sci USA 1998 95: 8292–8297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kamijo T, Zindy F, Roussel MF et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF Cell 1997 91: 649–659

    Article  CAS  PubMed  Google Scholar 

  5. Honda R, Yasuda H . Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53 EMBO J 1999 18: 22–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rizos H, Darmanian AP, Mann GJ et al. Two arginine rich domains in the p14ARF tumour suppressor mediate nucleolar localization Oncogene 2000 19: 2978–2985

    Article  CAS  PubMed  Google Scholar 

  7. Xiao ZX, Chen J, Levine AJ et al. Interaction between the retinoblastoma protein and the oncoprotein MDM2 Nature 1995 375: 694–698

    Article  CAS  PubMed  Google Scholar 

  8. Carnero A, Hudson JD, Price CM et al. p16INK4A and p19ARF act in overlapping pathways in cellular immortalization Nat Cell Biol 2000 2: 148–155

    Article  CAS  PubMed  Google Scholar 

  9. Haber DA . Splicing into senescence: the curious case of p16 and p19ARF Cell 1997 91: 555–558

    Article  CAS  PubMed  Google Scholar 

  10. Vonlanthen S, Heighway J, Tschan MP et al. Expression of p16INK4a/p16alpha and p19ARF/p16beta is frequently altered in non-small cell lung cancer and correlates with p53 overexpression Oncogene 1998 17: 2779–2785

    Article  CAS  PubMed  Google Scholar 

  11. Kannan K, Munirajan AK, Krishnamurthy J et al. The p16INK4alpha/p19ARF gene mutations are infrequent and are mutually exclusive to p53 mutations in Indian oral squamous cell carcinomas Int J Oncol 2000 16: 585–590

    CAS  PubMed  Google Scholar 

  12. Pinyol M, Hernandez L, Martinez A et al. INK4a/ARF locus alterations in human non-Hodgkin's lymphomas mainly occur in tumors with wild-type p53 gene Am J Pathol 2000 156: 1987–1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fulci G, Labuhn M, Maier D et al. p53 gene mutation and ink4a-arf deletion appear to be two mutually exclusive events in human glioblastoma Oncogene 2000 19: 3816–3822

    Article  CAS  PubMed  Google Scholar 

  14. Borgstrom P, Gold DP, Hillan KJ et al. Importance of VEGF for breast cancer angiogenesis in vivo: implications from intravital microscopy of combination treatments with an anti-VEGF neutralizing monoclonal antibody and doxorubicin Anticancer Res 1999 19: 4203–4214

    CAS  PubMed  Google Scholar 

  15. Sacco MG, Gribaldo L, Barbieri O et al. Establishment and characterization of a new mammary adenocarcinoma cell line derived from MMTV neu transgenic mice Breast Cancer Res Treat 1998 47: 171–180

    Article  CAS  PubMed  Google Scholar 

  16. Torres Filho IP, Hartley-Asp B, Borgstrom P . Quantitative angiogenesis in a syngeneic tumor spheroid model Microvasc Res 1995 49: 212–226

    Article  CAS  PubMed  Google Scholar 

  17. Lehr HA, Leunig M, Menger MD et al. Dorsal skinfold chamber technique for intravital microscopy in nude mice Am J Pathol 1993 143: 1055–1062

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gjerset RA, Turla ST, Sobol RE et al. Use of wild-type p53 to achieve complete treatment sensitization of tumor cells expressing endogenous mutant p53 Mol Carcinog 1995 14: 275–285

    Article  CAS  PubMed  Google Scholar 

  19. Graham FL, Prevec L . Manipulations of adenovirus vectors In: Murray J, ed Methods in Molecular Biology New Jersey: Humana Press 1991

    Google Scholar 

  20. Zhang WW, Fang X, Branch CD et al. Generation and identification of recombinant adenovirus by liposome-mediated transfection and PCR analysis Biotechniques 1993 15: 868–872

    CAS  PubMed  Google Scholar 

  21. Ghaneh P, Greenhalf W, Humphreys M et al. Adenovirus-mediated transfer of p53 and p16(INK4a) results in pancreatic cancer regression in vitro and in vivo Gene Ther 2001 8: 199–208

    Article  CAS  PubMed  Google Scholar 

  22. Lebedeva S, Bagdasarova S, Tyler T et al. Tumor suppression and therapy sensitization of localized and metastatic breast cancer by adenovirus p53 Hum Gene Ther 2001 12: 763–772

    Article  CAS  PubMed  Google Scholar 

  23. Stone S, Jiang P, Dayananth P et al. Complex structure and regulation of the P16 (MTS1) locus Cancer Res 1995 55: 2988–2994

    CAS  PubMed  Google Scholar 

  24. Costanzi-Strauss E, Strauss BE, Naviaux RK et al. Restoration of growth arrest by p16INK4, p21WAF1, pRB, and p53 is dependent on the integrity of the endogenous cell-cycle control pathways in human glioblastoma cell lines Exp Cell Res 1998 238: 51–62

    Article  CAS  PubMed  Google Scholar 

  25. Parry D, Bates S, Mann DJ et al. Lack of cyclin D-Cdk complexes in Rb-negative cells correlates with high levels of p16INK4/MTS1 tumour suppressor gene product EMBO J 1995 14: 503–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao X, Day ML . RB activation and repression of C-MYC transcription precede apoptosis of human prostate epithelial cells Urology 2001 57: 860–865

    Article  CAS  PubMed  Google Scholar 

  27. Higashi H, Suzuki-Takahashi I, Yoshida E et al. Expression of p16INK4a suppresses the unbounded and anchorage-independent growth of a glioblastoma cell line that lacks p16INK4a Biochem Biophys Res Commun 1997 231: 743–750

    Article  CAS  PubMed  Google Scholar 

  28. Jarrard DF, Bova GS, Ewing CM et al. Deletional, mutational, and methylation analyses of CDKN2 (p16/MTS1) in primary and metastatic prostate cancer Genes Chromosomes Cancer 1997 19: 90–96

    Article  CAS  PubMed  Google Scholar 

  29. Schultz DC, Vanderveer L, Buetow KH et al. Characterization of chromosome 9 in human ovarian neoplasia identifies frequent genetic imbalance on 9q and rare alterations involving 9p, including CDKN2 Cancer Res 1995 55: 2150–2157

    CAS  PubMed  Google Scholar 

  30. Steiner MS, Wang Y, Zhang Y et al. p16/MTS1/INK4A suppresses prostate cancer by both pRb dependent and independent pathways Oncogene 2000 19: 1297–1306

    Article  CAS  PubMed  Google Scholar 

  31. Gudas JM, Nguyen H, Klein RC et al. Differential expression of multiple MDM2 messenger RNAs and proteins in normal and tumorigenic breast epithelial cells Clin Cancer Res 1995 1: 71–80

    CAS  PubMed  Google Scholar 

  32. Khan SH, Moritsugu J, Wahl GM . Differential requirement for p19ARF in the p53-dependent arrest induced by DNA damage, microtubule disruption, and ribonucleotide depletion Proc Natl Acad Sci USA 2000 97: 3266–3271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stott FJ, Bates S, James MC et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2 EMBO J 1998 17: 5001–5014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanchez-Cespedes M, Reed AL, Buta M et al. Inactivation of the INK4A/ARF locus frequently coexists with TP53 mutations in non-small cell lung cancer Oncogene 1999 18: 5843–5849

    Article  CAS  PubMed  Google Scholar 

  35. Gazzeri S, Della Valle V, Chaussade L et al. The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancer Cancer Res 1998 58: 3926–3931

    CAS  PubMed  Google Scholar 

  36. Weber JD, Jeffers JR, Rehg JE et al. p53-independent functions of the p19(ARF) tumor suppressor Genes Dev 2000 14: 2358–2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eymin B, Karayan L, Seite P et al. Human ARF binds E2F1 and inhibits its transcriptional activity Oncogene 2001 10: 1033–1041

    Article  Google Scholar 

  38. Karayan L, Riou JF, Seite P et al. Human ARF protein interacts with Topoisomerase I and stimulates its activity Oncogene 2001 19: 836–848

    Article  Google Scholar 

  39. Jackson MW, Lindstrom MS, Berberich SJ . MdmX binding to ARF affects Mdm2 protein stability and p53 transactivation J Biol Chem 2001 10: 10

    Google Scholar 

  40. Yang CT, You L, Yeh CC et al. Adenovirus-mediated p14(ARF) gene transfer in human mesothelioma cells J Natl Cancer Inst 2000 92: 636–641

    Article  CAS  PubMed  Google Scholar 

  41. Sweeney P, Pisters LL . Ad5CMVp53 gene therapy for locally advanced prostate cancer — where do we stand? World J Urol 2000 18: 121–124

    Article  CAS  PubMed  Google Scholar 

  42. Swisher SG, Roth JA, Nemunaitis J et al. Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer J Natl Cancer Inst 1999 91: 763–771

    Article  CAS  PubMed  Google Scholar 

  43. Swisher SG, Roth JA . Gene therapy in lung cancer Curr Oncol Rep 2000 2: 64–70

    Article  CAS  PubMed  Google Scholar 

  44. Nemunaitis J, Swisher SG, Timmons T et al. Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer J Clin Oncol 2000 18: 609–622

    Article  CAS  PubMed  Google Scholar 

  45. Logothetis CJ et al. AdCMV-p53 intraprostatic gene therapy preceding radical prostatectomy (RP): an in vivo model for targeted therapy development J Clin Oncol 1999 18: 1203A

    Google Scholar 

  46. Asai A, Miyagi Y, Sugiyama A et al. Negative effects of wild-type p53 and s-Myc on cellular growth and tumorigenicity of glioma cells. Implication of the tumor suppressor genes for gene therapy J Neuro Oncol 1994 19: 259–268

    Article  CAS  Google Scholar 

  47. Cai Z, Capoulade C, Moyret-Lalle C et al. Resistance of MCF7 human breast carcinoma cells to TNF-induced cell death is associated with loss of p53 function Oncogene 1997 15: 2817–2826

    Article  CAS  PubMed  Google Scholar 

  48. Chen PL, Chen YM, Bookstein R et al. Genetic mechanisms of tumor suppression by the human p53 gene Science 1990 250: 1576–1580

    Article  CAS  PubMed  Google Scholar 

  49. Johnson P, Gray D, Mowat M et al. Expression of wild-type p53 is not compatible with continued growth of p53-negative tumor cells Mol Cell Biol 1991 11: 1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lesoon-Wood LA, Kim WH, Kleinman HK et al. Systemic gene therapy with p53 reduces growth and metastases of a malignant human breast cancer in nude mice Hum Gene Ther 1995 6: 395–405

    Article  CAS  PubMed  Google Scholar 

  51. Takahashi T, Carbone D, Nau MM et al. Wild-type but not mutant p53 suppresses the growth of human lung cancer cells bearing multiple genetic lesions Cancer Res 1992 52: 2340–2343

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants (RAG) from the California Cancer Research Program (no. 99-00517V-10140), the California Breast Cancer Research Program (no. 6JB-0077), the Department of Defense Breast Cancer Research Program (no. DAMD 17-96-1-6038), and the National Cancer Institute (no. CA69546).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth A Gjerset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saadatmandi, N., Tyler, T., Huang, Y. et al. Growth suppression by a p14ARF exon 1β adenovirus in human tumor cell lines of varying p53 and Rb status. Cancer Gene Ther 9, 830–839 (2002). https://doi.org/10.1038/sj.cgt.7700505

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700505

Keywords

This article is cited by

Search

Quick links