Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Delivery into cells: lessons learned from plant and bacterial toxins

Abstract

A number of protein toxins of bacterial and plant origin have cytosolic targets, and knowledge about these toxins have provided us with essential information about mechanisms that can be used to gain access to the cytosol as well as detailed knowledge about endocytosis and intracellular sorting. Such toxins include those that have two moieties, one (the B-moiety) that binds to cell surface receptors and another (the A-moiety) with enzymatic activity that enters the cytosol, as well as molecules that only have the enzymatically active moiety and therefore are inefficient in cell entry. The toxins discussed in the present article include bacterial toxins such as Shiga toxin and diphtheria toxin, as well as plant toxins such as ricin and ribosome-inactivating proteins without a binding moiety, such as gelonin. Toxins with a binding moiety can be used as vectors to translocate epitopes, intact proteins, and even nucleotides into the cytosol. The toxins fall into two main groups when it comes to cytosolic entry. Some toxins enter from endosomes in response to low endosomal pH, whereas others, including Shiga toxin and ricin, are transported all the way to the Golgi apparatus and the ER before they are translocated to the cytosol. Plant proteins such as gelonin that are without a binding moiety are taken up only by fluid-phase endocytosis, and normally they have a low toxicity. However, they can be used to test for disruption of endosomal membranes leading to cytosolic access of internalized molecules. Similarly to toxins with a binding moiety they are highly toxic when reaching the cytosol, thereby providing the investigator with an efficient tool to study endosomal disruption and induced transport to the cytosol. In conclusion, the protein toxins are useful tools to study transport and cytosolic translocation, and they can be used as vectors for transport to the interior of the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Sandvig K, van Deurs B . Membrane traffic exploited by protein toxins. Ann Rev Cell Dev Biol 2002; 18: 1–14.

    Article  CAS  Google Scholar 

  2. Hartley MR, Lord JM . Cytotoxic ribosome-inactivating lectins from plants. Biochim Biophys Acta 2004; 1701: 1–14.

    Article  CAS  PubMed  Google Scholar 

  3. Sandvig K, Wälchli S, Lauvrak SU . Shiga toxins and their mechanism of cell entry. Topics Curr Genet 2004; 11: 35–54.

    Article  CAS  Google Scholar 

  4. Sandvig K, Lauvrak SU, van Deurs B . Host cell penetration and trafficking of protein toxins. In: Proft T (ed). Microbial Toxins: Molecular and Cellular Biology. Horizon Press, Norfolk, 2005, pp 473–496.

    Google Scholar 

  5. Turton K, Chaddock JA, Acharya KR . Botulinum and tetanus neurotoxins: structure, function and therapeutic utility. Trends Biochem Sci 2002; 27: 552–558.

    Article  CAS  PubMed  Google Scholar 

  6. Schirmer J, Aktories K . Large clostridial cytotoxins: cellular biology of Rho/Ras-glucosylating toxins. Biochim Biophys Acta 2004; 1673: 66–74.

    Article  CAS  PubMed  Google Scholar 

  7. Sandvig K, Olsnes S . Diphtheria toxin entry into cells is facilitated by low pH. J Cell Biol 1980; 87: 828–832.

    Article  CAS  PubMed  Google Scholar 

  8. Draper RK, Simon MI . The entry of diphtheria toxin into the mammalian cell cytoplasm: evidence for lysosomal involvement. J Cell Biol 1980; 87: 849–854.

    Article  CAS  PubMed  Google Scholar 

  9. Smith DC et al. 1st class ticket to class I: protein toxins as pathfinders for antigen presentation. Traffic 2002; 3: 697–704.

    Article  CAS  PubMed  Google Scholar 

  10. Wiedlocha A et al. Dual mode of signal transduction by externally added acidic fibroblast growth factor. Cell 1994; 76: 1039–1051.

    Article  CAS  PubMed  Google Scholar 

  11. Aullo P et al. A chimeric toxin to study the role of the 21 kDa GTP binding protein rho in the control of actin microfilament assembly. EMBO J 1993; 12: 921–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Uherek C, Fominaya J, Wels W . A modular DNA carrier protein based on the structure of diphtheria toxin mediates target cell-specific gene delivery. J Biol Chem 1998; 273: 8835–8841.

    Article  CAS  PubMed  Google Scholar 

  13. Fisher KJ, Wilson JM . The transmembrane domain of diphtheria toxin improves molecular conjugate gene transfer. Biochem J 1997; 321: 49–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fominaya J, Wels W . Target cell-specific DNA transfer mediated by a chimeric multidomain protein. Novel non-viral gene delivery system. J Biol Chem 1996; 271: 10560–10568.

    Article  CAS  PubMed  Google Scholar 

  15. Facchini LM, Lingwood CA . A verotoxin 1 B subunit-lambda CRO chimeric protein specifically binds both DNA and globotriaosylceramide (Gb(3)) to effect nuclear targeting of exogenous DNA in Gb(3) positive cells. Exp Cell Res 2001; 269: 117–129.

    Article  CAS  PubMed  Google Scholar 

  16. Gaur R et al. Delivery of nucleic acid into mammalian cells by anthrax toxin. Biochem Biophys Res Commun 2002; 297: 1121–1127.

    Article  CAS  PubMed  Google Scholar 

  17. Barrett LB et al. Targeted transfection of neuronal cells using a poly(D-lysine)-cholera-toxin b chain conjugate. Biochem Soc Trans 1999; 27: 851–857.

    Article  CAS  PubMed  Google Scholar 

  18. Barrett LB et al. CTb targeted non-viral cDNA delivery enhances transgene expression in neurons. J Gene Med 2004; 6: 429–438.

    Article  CAS  PubMed  Google Scholar 

  19. Fominaya J, Uherek C, Wels W . A chimeric fusion protein containing transforming growth factor-alpha mediates gene transfer via binding to the EGF receptor. Gene Therapy 1998; 5: 521–530.

    Article  CAS  PubMed  Google Scholar 

  20. Conner SD, Schmid SL . Regulated portals of entry into the cell. Nature 2003; 422: 37–44.

    Article  CAS  PubMed  Google Scholar 

  21. Moya M et al. Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin. J Cell Biol 1985; 101: 548–559.

    Article  CAS  PubMed  Google Scholar 

  22. Sandvig K, Olsnes S, Petersen OW, van Deurs B . Acidification of the cytosol inhibits endocytosis from coated pits. J Cell Biol 1987; 105: 679–689.

    Article  CAS  PubMed  Google Scholar 

  23. Sabharanjak S, Sharma P, Parton RG, Mayor S . GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell 2002; 2: 411–423.

    Article  CAS  PubMed  Google Scholar 

  24. Naslavsky N, Weigert R, Donaldson JG . Characterization of a nonclathrin endocytic pathway: membrane cargo and lipid requirements. Mol Biol Cell 2004; 15: 3542–3552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lamaze C et al. Interleukin 2 receptors and detergent-resistant membrane domains difine a clathrin-independent endocytic pathway. Mol Cell 2001; 7: 661–671.

    Article  CAS  PubMed  Google Scholar 

  26. Rodal SK et al. Extraction of cholesterol with methyl-β-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 1999; 10: 961–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grimmer S, Iversen TG, van Deurs B, Sandvig K . Endosome to Golgi transport of ricin is regulated by cholesterol. Mol Biol Cell 2000; 11: 4205–4216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sandvig K et al. Pathways followed by protein toxins into cells. Int J Med Microbiol 2004; 293: 483–490.

    Article  CAS  PubMed  Google Scholar 

  29. Abrami L et al. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J Cell Biol 2003; 160: 321–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cherla RP, Lee SY, Tesh VL . Shiga toxins and apoptosis. FEMS Microbiol Lett 2003; 228: 159–166.

    Article  CAS  PubMed  Google Scholar 

  31. De Haan L, Hirst TR . Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (Review). Mol Membr Biol 2004; 21: 77–92.

    Article  CAS  PubMed  Google Scholar 

  32. Thomsen P, Roepstorff K, Stahlhut M, van Deurs B . Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 2002; 13: 238–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pelkmans L, Helenius A . Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol 2003; 15: 414–422.

    Article  CAS  PubMed  Google Scholar 

  34. Sharma DK et al. Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol Biol Cell 2004; 15: 3114–3122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pelkmans L, Burli T, Zerial M, Helenius A . Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 2004; 118: 767–780.

    Article  CAS  PubMed  Google Scholar 

  36. Skretting G, Torgersen ML, van Deurs B, Sandvig K . Endocytic mechanisms responsible for uptake of GPI-linked diphtheria toxin receptor. J Cell Sci 1999; 112: 3899–3909.

    Article  CAS  PubMed  Google Scholar 

  37. Sandvig K, Olsnes S . Rapid entry of nicked diphtheria toxin into cells at low pH Characterization of the entry process and effects of low pH on the toxin molecule. J Biol Chem 1981; 256: 9068–9076.

    Article  CAS  PubMed  Google Scholar 

  38. Sandvig K, Olsnes S . Diphtheria toxin-induced channels in Vero cells selective for monovalent cations. J Biol Chem 1988; 263: 12352–12359.

    Article  CAS  PubMed  Google Scholar 

  39. Rosconi MP, Zhao G, London E . Analyzing topography of membrane-inserted diphtheria toxin T domain using BODIPY-streptavidin: at low pH, helices 8 and 9 form a transmembrane hairpin but helices 5–7 form stable nonclassical inserted segments on the cis side of the bilayer. Biochemistry 2004; 43: 9127–9139.

    Article  CAS  PubMed  Google Scholar 

  40. Almond BD, Eidels L . The cytoplasmic domain of the diphtheria toxin receptor (HB-EGF precursor) is not required for receptor-mediated endocytosis. J Biol Chem 1994; 269: 26635–26641.

    Article  CAS  PubMed  Google Scholar 

  41. Sundan A, Olsnes S, Sandvig K, Pihl A . Preparation and properties of chimeric toxins prepared from the constituent polypeptides of diphtheria toxin and ricin. Evidence for entry of ricin A-chain via the diphtheria toxin pathway. J Biol Chem 1982; 257: 9733–9739.

    Article  CAS  PubMed  Google Scholar 

  42. Trehin R, Merkle HP . Chances and pitfalls of cell penetrating peptides for cellular drug delivery. Eur J Pharm Biopharm 2004; 58: 209–223.

    Article  CAS  PubMed  Google Scholar 

  43. Stirpe F . Ribosome-inactivating proteins. Toxicon 2004; 44: 371–383.

    Article  CAS  PubMed  Google Scholar 

  44. Selbo PK, Sandvig K, Kirveliene V, Berg K . Release of gelonin from endosomes and lysosomes to cytosol by photochemical internalization. Biochim Biophys Acta 2000; 1475: 307–313.

    Article  CAS  PubMed  Google Scholar 

  45. Stefanidakis M, Koivunen E . Peptide-mediated delivery of therapeutic and imaging agents into mammalian cells. Curr Pharm Des 2004; 10: 3033–3044.

    Article  CAS  PubMed  Google Scholar 

  46. Wang L, MacDonald RC . New strategy for transfection: mixtures of medium-chain and long-chain cationic lipids synergistically enhance transfection. Gene Therapy 2004; 11: 1358–1362.

    Article  CAS  PubMed  Google Scholar 

  47. van Deurs B, Holm PK, Sandvig K . Inhibition of the vacuolar H+-ATPase with bafilomycin reduces delivery of internalized molecules from mature multivesicular endosomes to lysosomes. Eur J Cell Biol 1996; 69: 343–350.

    CAS  PubMed  Google Scholar 

  48. Sandvig K, Olsnes S . Entry of the toxic proteins abrin, modeccin, ricin, and diphtheria toxin into cells. II. Effect of pH, metabolic inhibitors, and ionophores and evidence for toxin penetration from endocytotic vesicles. J Biol Chem 1982; 257: 7504–7513.

    Article  CAS  PubMed  Google Scholar 

  49. van Deurs B, Holm PK, Kayser L, Sandvig K . Fusion of mature endosomes with preexisting lysosomes in the human carcinoma cell line HEp-2 involves actin microfilaments. Eur J Cell Biol 1995; 66: 309–323.

    CAS  PubMed  Google Scholar 

  50. van Deurs B et al. Estimation of the amount of internalized ricin that reaches the trans-Golgi network. J Cell Biol 1988; 106: 253–267.

    Article  CAS  PubMed  Google Scholar 

  51. van Deurs B et al. Routing of internalized ricin and ricin conjugates to the Golgi complex. J Cell Biol 1986; 102: 37–47.

    Article  CAS  PubMed  Google Scholar 

  52. Mellman I, Plutner H . Internalization and degradation of macrophage Fc receptors bound to polyvalent immune complexes. J Cell Biol 1984; 98: 1170–1177.

    Article  CAS  PubMed  Google Scholar 

  53. Mellman I, Plutner H, Ukkonen P . Internalization and rapid recycling of macrophage Fc receptors tagged with monovalent antireceptor antibody: possible role of a prelysosomal compartment. J Cell Biol 1984; 98: 1163–1169.

    Article  CAS  PubMed  Google Scholar 

  54. Sandvig K, Olsnes S . Effect of temperature on the uptake, excretion and degradation of abrin and ricin by HeLa cells. Exp Cell Res 1979; 121: 15–25.

    Article  CAS  PubMed  Google Scholar 

  55. Maxfield FR, McGraw TE . Endocytic recycling. Nat Rev Mol Cell Biol 2004; 5: 121–132.

    CAS  PubMed  Google Scholar 

  56. Sannerud R, Saraste J, Goud B . Retrograde traffic in the biosynthetic-secretory route: pathways and machinery. Curr Opin Cell Biol 2003; 15: 438–445.

    Article  CAS  PubMed  Google Scholar 

  57. Sandvig K et al. Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature 1992; 358: 510–511.

    Article  CAS  PubMed  Google Scholar 

  58. Lauvrak SU, Torgersen ML, Sandvig K . Efficient endosome-to-Golgi transport of Shiga toxin is dependent on dynamin and clathrin. J Cell Sci 2004; 117: 2321–2331.

    Article  CAS  PubMed  Google Scholar 

  59. Saint-Pol A et al. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes. Dev Cell 2004; 6: 525–538.

    Article  CAS  PubMed  Google Scholar 

  60. Chen A, AbuJarour RJ, Draper RK . Evidence that the transport of ricin to the cytoplasm is independent of both Rab6A and COPI. J Cell Sci 2003; 116: 3503–3510.

    Article  CAS  PubMed  Google Scholar 

  61. Llorente A, Lauvrak SU, van Deurs B, Sandvig K . Induction of direct endosome to endoplasmic reticulum transport in Chinese hamster ovary (CHO) cells (LdlF) with a temperature-sensitive defect in epsilon-coatomer protein (epsilon-COP). J Biol Chem 2003; 278: 35850–35855.

    Article  CAS  PubMed  Google Scholar 

  62. Hansen SH, Sandvig K, van Deurs B . Molecules internalized by clathrin-independent endocytosis are delivered to endosomes containing transferrin receptors. J Cell Biol 1993; 123: 89–97.

    Article  CAS  PubMed  Google Scholar 

  63. Nilsson I et al. Inhibition of protein translocation across the endoplasmic reticulum membrane by sterols. J Biol Chem 2001; 276: 41748–41754.

    Article  CAS  PubMed  Google Scholar 

  64. Lencer WI, Tsai B . The intracellular voyage of cholera toxin: going retro. Trends Biochem Sci 2003; 28: 639–645.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang JX, Braakman I, Matlack KE, Helenius A . Quality control in the secretory pathway: the role of calreticulin, calnexin and BiP in the retention of glycoproteins with C-terminal truncations. Mol Biol Cell 1997; 8: 1943–1954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Simpson JC et al. Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. FEBS Lett 1999; 459: 80–84.

    Article  CAS  PubMed  Google Scholar 

  67. Romisch K . Surfing the Sec61 channel: bidirectional protein translocation across the ER membrane. J Cell Sci 1999; 112: 4185–4191.

    Article  CAS  PubMed  Google Scholar 

  68. McKee ML, FitzGerald DJ . Reduction of furin-nicked Pseudomonas exotoxin A: an unfolding story. Biochemistry 1999; 38: 16507–16513.

    Article  CAS  PubMed  Google Scholar 

  69. Spooner RA et al. Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem J 2004; 383: 285–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bellisola G et al. Reductive activation of ricin and ricin A-chain immunotoxins by protein disulfide isomerase and thioredoxin reductase. Biochem Pharmacol 2004; 67: 1721–1731.

    Article  CAS  PubMed  Google Scholar 

  71. Wesche J, Rapak A, Olsnes S . Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol. J Biol Chem 1999; 274: 3443–3449.

    Google Scholar 

  72. Ye Y et al. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 2004; 429: 841–847.

    Article  CAS  PubMed  Google Scholar 

  73. Lilley BN, Ploegh HL . A membrane protein required for dislocation of misfolded proteins from the ER. Nature 2004; 429: 834–840.

    Article  CAS  PubMed  Google Scholar 

  74. Hunziker W, Whitney JA, Mellman I . Selective inhibition of transcytosis by brefeldin A in MDCK cells. Cell 1991; 67: 617–627.

    Article  CAS  PubMed  Google Scholar 

  75. Prydz K, Hansen SH, Sandvig K, van Deurs B . Effects of brefeldin A on endocytosis, transcytosis and transport to the Golgi complex in polarized MDCK cells. J Cell Biol 1992; 119: 259–272.

    Article  CAS  PubMed  Google Scholar 

  76. Vogel U, Sandvig K, van Deurs B . Expression of caveolin-1 and polarized formation of cavolae in Caco-2 and MDCK II cells. J Cell Sci 1998; 111: 825–832.

    Article  CAS  PubMed  Google Scholar 

  77. Eker P, Holm PK, van Deurs B, Sandvig K . Selective regulation of apical endocytosis in polarized MDCK cells by mastoparan and cAMP. J Biol Chem 1994; 269: 18607–18615.

    Article  CAS  PubMed  Google Scholar 

  78. Holm PK, Eker P, Sandvig K, van Deurs B . Phorbol myristate acetate selectively stimulates apical endocytosis via protein kinase C in polarized MDCK cells. Exp Cell Res 1995; 217: 157–168.

    Article  CAS  PubMed  Google Scholar 

  79. Llorente A et al. Apical endocytosis of ricin in MDCK cells is regulated by the cyclooxygenase pathway. J Cell Sci 2000; 113: 1213–1221.

    Article  CAS  PubMed  Google Scholar 

  80. Llorente A et al. Effect of calmodulin antagonists on endocytosis and intracellular transport of ricin in polarized MDCK cells. Exp Cell Res 1996; 227: 298–308.

    Article  CAS  PubMed  Google Scholar 

  81. Sandvig K et al. Apical macropinocytosis in polarized MDCK cells: regulation by N-ethylmaleimide-sensitive proteins. Eur J Cell Biol 2000; 79: 447–457.

    Article  CAS  PubMed  Google Scholar 

  82. Schnatwinkel C et al. The rab5 effector rabankyrin-5 regulates and coordinates different endocytic mechanisms. PLoS Biol 2004; 2: E261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Garred O, Rodal SK, van Deurs B, Sandvig K . Reconstitution of clathrin-independent endocytosis at the apical domain of permeabilized MDCK II cells: requirement for a Rho-family GTPase. Traffic 2001; 2: 26–36.

    Article  CAS  PubMed  Google Scholar 

  84. Hurley BP et al. Shiga toxins 1 and 2 translocate differently across polarized intestinal epithelial cells. Infect Immun 1999; 67: 6670–6677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Uherek C, Wels W . DNA-carrier proteins for targeted gene delivery. Adv Drug Deliv Rev 2000; 44: 153–166.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work performed by the authors of the present article is being supported by the Norwegian and Danish Cancer Societies, the Norwegian Research Council for Science and the Humanities, The Danish Medical Research Council, The Novo Nordisk Foundation, the Jahre Foundation, and Jeanette and Søren Bothners Legacy.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandvig, K., van Deurs, B. Delivery into cells: lessons learned from plant and bacterial toxins. Gene Ther 12, 865–872 (2005). https://doi.org/10.1038/sj.gt.3302525

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302525

Keywords

This article is cited by

Search

Quick links