Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Lipotoxicity, an imbalance between lipogenesis de novo and fatty acid oxidation

Abstract

Obesity and type 2 diabetes mellitus are the major noncommunicable public health problem of the 21st century. The best strategy to tackle this problem is to develop strategies to prevent/treat obesity. However, it is becoming clear that despite successful research identifying weight regulatory pathways, the development of the obesity epidemic is outpacing scientific progress. The lack of success controlling the obesity epidemic in an aging population will result in another subsequent uncontrolled epidemic of complications. Our research focuses on the mechanisms causing lipotoxicity aiming to identify suitable strategies to prevent or at least retard the development of the metabolic syndrome. Previous work using transgenic and knockout mouse models has shown an interplay between white adipose tissue and skeletal muscle linking fatty acid (FA) synthesis with reciprocal effects on FA oxidation. Work from our lab and others suggests that defective adipose tissue is a key link between obesity, insulin resistance and type 2 diabetes mellitus by promoting the development of lipotoxicity in peripheral tissues. We propose a series of models to describe the process by which the adipose tissue could react to an energy-rich environment and responds depending on genetic and physiological factors, impacting on the functions of other peripheral tissues. We suggest that by examining hypotheses that encompass multiple organs and the partitioning of energy between these organs, a suitable strategy can be devised for the treatment of chronic obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Molina JM, Ciaraldi TP, Brady D, Olefsky JM . Decreased activation rate of insulin-stimulated glucose transport in adipocytes from obese subjects. Diabetes 1989; 38: 991–995.

    Article  CAS  PubMed  Google Scholar 

  2. Holm C, Osterlund T, Laurell H, Contreras JA . Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 2000; 20: 365–393.

    Article  CAS  PubMed  Google Scholar 

  3. Olefsky JM . Insensitivity of large rat adipocytes to the antilipolytic effects of insulin. J Lipid Res 1977; 18: 459–464.

    Article  CAS  PubMed  Google Scholar 

  4. Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson SK, Farese Jr RV . Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc. Natl Acad Sci USA 1998; 95: 13018–13023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smith SJ, Cases S, Jensen DR, Chen HC, Sande E, Tow B, Sanan DA, Raber J, Eckel RH, Farese Jr RV . Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat [see comment]. Nat Genet 2000; 25: 87–90.

    Article  CAS  PubMed  Google Scholar 

  6. Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ . Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 2001; 291: 2613–2616.

    Article  CAS  PubMed  Google Scholar 

  7. Kerner J, Hoppel C . Fatty acid import into mitochondria. Biochim Biophys Acta 2000; 1486: 1–17.

    Article  CAS  PubMed  Google Scholar 

  8. Wang S, Subramaniam A, Cawthorne MA, Clapham JC . Increased fatty acid oxidation in transgenic mice overexpressing UCP3 in skeletal muscle. Diabetes Obesity etab 2003; 5: 295–301.

    Article  CAS  Google Scholar 

  9. Garg A . Lipodystrophies. Am J Med 2000; 108: 143–152.

    Article  CAS  PubMed  Google Scholar 

  10. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM . Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995; 95: 2409–2415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, Iwamoto K, Umesono K, Akanuma Y, Fujiwara T, Horikoshi H, Yazaki Y, Kadowaki T . Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998; 101: 1354–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Unger RH . Lipotoxic diseases. Annu Rev Med 2002; 53: 319–336.

    Article  CAS  PubMed  Google Scholar 

  13. Jequier E . Leptin signaling, adiposity, and energy balance. Ann NY Acad Sci 2002; 967: 379–388.

    Article  CAS  PubMed  Google Scholar 

  14. Sethi JK, Hotamisligil GS . The role of TNF alpha in adipocyte metabolism. Semin Cell Dev Biol 1999; 10: 19–29.

    Article  CAS  PubMed  Google Scholar 

  15. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T . The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7: 941–946.

    Article  CAS  PubMed  Google Scholar 

  16. Arner P . The adipocyte in insulin resistance: key molecules and the impact of the thiazolidinediones. Trends Endocrinol Metab 2003; 14: 137–145.

    Article  CAS  PubMed  Google Scholar 

  17. Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, Goldstein JL, Brown MS . SREBP-1, a basic-helix–loop–helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 1993; 75: 187–197.

    Article  CAS  PubMed  Google Scholar 

  18. Tontonoz P, Kim JB, Graves RA, Spiegelman BM . ADD1: a novel helix–loop–helix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol 1993; 13: 4753–4759.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Brown MS, Goldstein JL . A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci USA 1999; 96: 11041–11048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim JB, Spotts GD, Halvorsen YD, Shih HM, Ellenberger T, Towle HC, Spiegelman BM . Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix–loop–helix domain. Mol Cell Biol 1995; 15: 2582–2588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shimomura I, Shimano H, Horton JD, Goldstein JL, Brown MS . Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest 1997; 99: 838–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL . Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest 1997; 99: 846–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ducluzeau PH, Perretti N, Laville M, Andreelli F, Vega N, Riou JP, Vidal H . Regulation by insulin of gene expression in human skeletal muscle and adipose tissue. Evidence for specific defects in type 2 diabetes. Diabetes 2001; 50: 1134–1142.

    Article  CAS  PubMed  Google Scholar 

  24. Hua X, Wu J, Goldstein JL, Brown MS, Hobbs HH . Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13. Genomics 1995; 25: 667–673.

    Article  CAS  PubMed  Google Scholar 

  25. Horton JD, Goldstein JL, Brown MS . SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109: 1125–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sakai J, Nohturfft A, Cheng D, Ho YK, Brown MS, Goldstein JL . Identification of complexes between the COOH-terminal domains of sterol regulatory element-binding proteins (SREBPs) and SREBP cleavage-activating protein. J Biol Chem 1997; 272: 20213–20221.

    Article  CAS  PubMed  Google Scholar 

  27. Nohturfft A, Yabe D, Goldstein JL, Brown MS, Espenshade PJ . Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell 2000; 102: 315–323.

    Article  CAS  PubMed  Google Scholar 

  28. Brown AJ, Sun L, Feramisco JD, Brown MS, Goldstein JL . Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism. Mol Cell 2002; 10: 237–245.

    Article  CAS  PubMed  Google Scholar 

  29. Espenshade PJ, Li WP, Yabe D . Sterols block binding of COPII proteins to SCAP, thereby controlling SCAP sorting in ER. Proc Natl Acad Sci USA 2002; 99: 11694–11699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brown MS, Goldstein JL . The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997; 89: 331–340.

    Article  CAS  PubMed  Google Scholar 

  31. Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R, Goldstein JL, Brown MS . Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 2002; 110: 489–500.

    Article  CAS  PubMed  Google Scholar 

  32. Yabe D, Brown MS, Goldstein JL . Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc Natl Acad Sci USA 2002; 99: 12753–12758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim JB, Sarraf P, Wright M, Yao KM, Mueller E, Solanes G, Lowell BB, Spiegelman BM . Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest 1998; 101: 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Le Lay S, Lefrere I, Trautwein C, Dugail I, Krief S . Insulin and sterol-regulatory element-binding protein-1c (SREBP-1C) regulation of gene expression in 3T3-L1 adipocytes. Identification of CCAAT/enhancer-binding protein beta as an SREBP-1C target. J Biol Chem 2002; 277: 35625–35634.

    Article  CAS  PubMed  Google Scholar 

  35. Sewter C, Berger D, Considine RV, Medina G, Rochford J, Ciaraldi T, Henry R, Dohm L, Flier JS, O’Rahilly S, Vidal-Puig AJ . Human obesity and type 2 diabetes are associated with alterations in SREBP1 isoform expression that are reproduced ex vivo by tumor necrosis factor-alpha. Diabetes 2002; 51: 1035–1041.

    Article  CAS  PubMed  Google Scholar 

  36. Ricquier D, Bouillaud F . The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J 2000; 345 (Part 2): 161–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rosenberg D, Groussin L, Jullian E, Perlemoine K, Bertagna X, Bertherat J . Role of the PKA-regulated transcription factor CREB in development and tumorigenesis of endocrine tissues. Ann NY Acad Sci 2002; 968: 65–74.

    Article  CAS  PubMed  Google Scholar 

  38. Canettieri G, Celi FS, Baccheschi G, Salvatori L, Andreoli M, Centanni M . Isolation of human type 2 deiodinase gene promoter and characterization of a functional cyclic adenosine monophosphate response element. Endocrinology 2000; 141: 1804–1813.

    Article  CAS  PubMed  Google Scholar 

  39. Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M . CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001; 413: 179–183.

    Article  CAS  PubMed  Google Scholar 

  40. Weitzel JM, Iwen KA, Seitz HJ . Regulation of mitochondrial biogenesis by thyroid hormone. Exp Physiol 2003; 88: 121–128.

    Article  CAS  PubMed  Google Scholar 

  41. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM . Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999; 98: 115–124.

    Article  CAS  PubMed  Google Scholar 

  42. Tiraby C, Tavernier G, Lefort C, Larrouy D, Bouillaud F, Ricquier D, Langin D . Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 2003; 278: 33370–33376.

    Article  CAS  PubMed  Google Scholar 

  43. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM . Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres [see comment]. Nature 2002; 418: 797–801.

    Article  CAS  PubMed  Google Scholar 

  44. Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM . Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 2002; 277: 1645–1648.

    Article  CAS  PubMed  Google Scholar 

  45. Meirhaeghe A, Crowley V, Lenaghan C, Lelliott C, Green K, Stewart A, Hart K, Schinner S, Sethi JK, Yeo G, Brand MD, Cortright RN, O’Rahilly S, Montague C, Vidal-Puig AJ . Characterization of the human, mouse and rat PGC1 beta (peroxisome-proliferator-activated receptor-gamma co-activator 1 beta) gene in vitro and in vivo. Biochem J 2003; 373: 155–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, Newgard CB, Spiegelman BM . Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem 2003; 278: 26597–26603.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A J Vidal-Puig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lelliott, C., Vidal-Puig, A. Lipotoxicity, an imbalance between lipogenesis de novo and fatty acid oxidation. Int J Obes 28 (Suppl 4), S22–S28 (2004). https://doi.org/10.1038/sj.ijo.0802854

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802854

Keywords

This article is cited by

Search

Quick links