Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia

Abstract

To develop a therapy for drug-resistant B-lineage acute lymphoblastic leukemia (ALL), we transduced T lymphocytes with anti-CD19 chimeric receptors, consisting of an anti-CD19 single-chain variable domain (reactive with most ALL cases), the hinge and transmembrane domains of CD8α, and the signaling domain of CD3ζ. We compared the antileukemic activity mediated by a novel receptor (‘anti-CD19-BB-ζ’) containing the signaling domain of 4-1BB (CD137; a crucial molecule for T-cell antitumor activity) to that of a receptor lacking costimulatory molecules. Retroviral transduction produced efficient and durable receptor expression in human T cells. Lymphocytes expressing anti-CD19-BB-ζ receptors exerted powerful and specific cytotoxicity against ALL cells, which was superior to that of lymphocytes with receptors lacking 4-1BB. Anti-CD19-BB-ζ lymphocytes were remarkably effective in cocultures with bone marrow mesenchymal cells, and against leukemic cells from patients with drug-resistant ALL: as few as 1% anti-CD19-BB-ζ-transduced T cells eliminated most ALL cells within 5 days. These cells also expanded and produced interleukin-2 in response to ALL cells at much higher rates than those of lymphocytes expressing equivalent receptors lacking 4-1BB. We conclude that anti-CD19 chimeric receptors containing 4-1BB are a powerful new tool for T-cell therapy of B-lineage ALL and other CD19+ B-lymphoid malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gadner H, Haas OA, Masera G, Pui CH, Schrappe M . ‘Ponte di Legno’ Working Group – report on the Fifth International Childhood Acute Lymphoblastic Leukemia Workshop: Vienna, Austria, 29 April–1 May 2002. Leukemia 2003; 17: 798–803.

    Article  CAS  PubMed  Google Scholar 

  2. Verma A, Stock W . Management of adult acute lymphoblastic leukemia: moving toward a risk-adapted approach. Curr Opin Oncol 2001; 13: 14–20.

    Article  CAS  PubMed  Google Scholar 

  3. Pui CH, Campana D, Evans WE . Childhood acute lymphoblastic leukemia – current status and future perspectives. Lancet Oncol 2001; 2: 597–607.

    Article  CAS  PubMed  Google Scholar 

  4. Champlin R . T-cell depletion to prevent graft-versus-host disease after bone marrow transplantation. Hematol Oncol Clin North Am 1990; 4: 687–698.

    Article  CAS  PubMed  Google Scholar 

  5. Porter DL, Antin JH . The graft-versus-leukemia effects of allogeneic cell therapy. Annu Rev Med 1999; 50: 369–386.

    Article  CAS  PubMed  Google Scholar 

  6. Appelbaum FR . Haematopoietic cell transplantation as immunotherapy. Nature 2001; 411: 385–389.

    Article  CAS  PubMed  Google Scholar 

  7. Porter DL, Roth MS, McGarigle C, Ferrara JL, Antin JH . Induction of graft-versus-host disease as immunotherapy for relapsed chronic myeloid leukemia. N Engl J Med 1994; 330: 100–106.

    Article  CAS  PubMed  Google Scholar 

  8. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood 1995; 86: 2041–2050.

    CAS  PubMed  Google Scholar 

  9. Slavin S, Naparstek E, Nagler A, Ackerstein A, Samuel S, Kapelushnik J et al. Allogeneic cell therapy with donor peripheral blood cells and recombinant human interleukin-2 to treat leukemia relapse after allogeneic bone marrow transplantation. Blood 1996; 87: 2195–2204.

    CAS  PubMed  Google Scholar 

  10. Collins Jr RH, Shpilberg O, Drobyski WR, Porter DL, Giralt S, Champlin R et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 1997; 15: 433–444.

    Article  PubMed  Google Scholar 

  11. Verdonck LF, Petersen EJ, Lokhorst HM, Nieuwenhuis HK, Dekker AW, Tilanus MG et al. Donor leukocyte infusions for recurrent hematologic malignancies after allogeneic bone marrow transplantation: impact of infused and residual donor T cells. Bone Marrow Transplant 1998; 22: 1057–1063.

    Article  CAS  PubMed  Google Scholar 

  12. Collins Jr RH, Goldstein S, Giralt S, Levine J, Porter D, Drobyski W et al. Donor leukocyte infusions in acute lymphocytic leukemia. Bone Marrow Transplant 2000; 26: 511–516.

    Article  PubMed  Google Scholar 

  13. Geiger TL, Jyothi MD . Development and application of receptor-modified T lymphocytes for adoptive immunotherapy. Transfus Med Rev 2001; 15: 21–34.

    Article  CAS  PubMed  Google Scholar 

  14. Schumacher TN . T-cell-receptor gene therapy. Nat Rev Immunol 2002; 2: 512–519.

    Article  CAS  PubMed  Google Scholar 

  15. Sadelain M, Riviere I, Brentjens R . Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer 2003; 3: 35–45.

    Article  CAS  PubMed  Google Scholar 

  16. Nadler LM, Anderson KC, Marti G, Bates M, Park E, Daley JF et al. B4, a human B lymphocyte-associated antigen expressed on normal, mitogen-activated, and malignant B lymphocytes. J Immunol 1983; 131: 244–250.

    CAS  PubMed  Google Scholar 

  17. Campana D, Behm FG . Immunophenotyping of leukemia. J Immunol Methods 2000; 243: 59–75.

    Article  CAS  PubMed  Google Scholar 

  18. Cooper LJ, Topp MS, Serrano LM, Gonzalez S, Chang WC, Naranjo A et al. T-cell clones can be rendered specific for CD19: toward the selective augmentation of the graft-versus-B-lineage leukemia effect. Blood 2003; 101: 1637–1644.

    Article  CAS  PubMed  Google Scholar 

  19. Brentjens RJ, Latouche JB, Santos E, Marti F, Gong MC, Lyddane C et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 2003; 9: 279–286.

    Article  CAS  PubMed  Google Scholar 

  20. Liebowitz DN, Lee KP, June CH . Costimulatory approaches to adoptive immunotherapy. Curr Opin Oncol 1998; 10: 533–541.

    Article  CAS  PubMed  Google Scholar 

  21. Allison JP, Lanier LL . Structure, function, and serology of the T-cell antigen receptor complex. Annu Rev Immunol 1987; 5: 503–540.

    Article  CAS  PubMed  Google Scholar 

  22. Salomon B, Bluestone JA . Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 2001; 19: 225–252.

    Article  CAS  PubMed  Google Scholar 

  23. Cardoso AA, Schultze JL, Boussiotis VA, Freeman GJ, Seamon MJ, Laszlo S et al. Pre-B acute lymphoblastic leukemia cells may induce T-cell anergy to alloantigen. Blood 1996; 88: 41–48.

    CAS  PubMed  Google Scholar 

  24. Kim YJ, Kim SH, Mantel P, Kwon BS . Human 4-1BB regulates CD28 co-stimulation to promote Th1 cell responses. Eur J Immunol 1998; 28: 881–890.

    Article  CAS  PubMed  Google Scholar 

  25. Hurtado JC, Kim YJ, Kwon BS . Signals through 4-1BB are costimulatory to previously activated splenic T cells and inhibit activation-induced cell death. J Immunol 1997; 158: 2600–2609.

    CAS  PubMed  Google Scholar 

  26. DeBenedette MA, Shahinian A, Mak TW, Watts TH . Costimulation of CD28− T lymphocytes by 4-1BB ligand. J Immunol 1997; 158: 551–559.

    CAS  PubMed  Google Scholar 

  27. Bukczynski J, Wen T, Watts TH . Costimulation of human CD28− T cells by 4-1BB ligand. Eur J Immunol 2003; 33: 446–454.

    Article  CAS  PubMed  Google Scholar 

  28. Shuford WW, Klussman K, Tritchler DD, Loo DT, Chalupny J, Siadak AW et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med 1997; 186: 47–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takahashi C, Mittler RS, Vella AT . Cutting edge: 4-1BB is a bona fide CD8 T cell survival signal. J Immunol 1999; 162: 5037–5040.

    CAS  PubMed  Google Scholar 

  30. Martinet O, Divino CM, Zang Y, Gan Y, Mandeli J, Thung S et al. T cell activation with systemic agonistic antibody vs local 4-1BB ligand gene delivery combined with interleukin-12 eradicate liver metastases of breast cancer. Gene Ther 2002; 9: 786–792.

    Article  CAS  PubMed  Google Scholar 

  31. May Jr KF, Chen L, Zheng P, Liu Y . Anti-4-1BB monoclonal antibody enhances rejection of large tumor burden by promoting survival but not clonal expansion of tumor-specific CD8+ T cells. Cancer Res 2002; 62: 3459–3465.

    CAS  PubMed  Google Scholar 

  32. Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellstrom KE et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med 1997; 3: 682–685.

    Article  CAS  PubMed  Google Scholar 

  33. Melero I, Bach N, Hellstrom KE, Aruffo A, Mittler RS, Chen L . Amplification of tumor immunity by gene transfer of the co-stimulatory 4-1BB ligand: synergy with the CD28 co-stimulatory pathway. Eur J Immunol 1998; 28: 1116–1121.

    Article  CAS  PubMed  Google Scholar 

  34. Ye Z, Hellstrom I, Hayden-Ledbetter M, Dahlin A, Ledbetter JA, Hellstrom KE . Gene therapy for cancer using single-chain Fv fragments specific for 4-1BB. Nat Med 2002; 8: 343–348.

    Article  CAS  PubMed  Google Scholar 

  35. Mogi S, Sakurai J, Kohsaka T, Enomoto S, Yagita H, Okumura K et al. Tumour rejection by gene transfer of 4-1BB ligand into a CD80(+) murine squamous cell carcinoma and the requirements of co-stimulatory molecules on tumour and host cells. Immunology 2000; 101: 541–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoshida H, Katayose Y, Unno M, Suzuki M, Kodama H, Takemura S et al. A novel adenovirus expressing human 4-1BB ligand enhances antitumor immunity. Cancer Immunol Immunother 2003; 52: 97–106.

    CAS  PubMed  Google Scholar 

  37. Manabe A, Coustan-Smith E, Kumagai M, Behm FG, Raimondi SC, Pui CH et al. Interleukin-4 induces programmed cell death (apoptosis) in cases of high-risk acute lymphoblastic leukemia. Blood 1994; 83: 1731–1737.

    CAS  PubMed  Google Scholar 

  38. Stong RC, Korsmeyer SJ, Parkin JL, Arthur DC, Kersey JH . Human acute leukemia cell line with the t(4;11) chromosomal rearrangement exhibits B lineage and monocytic characteristics. Blood 1985; 65: 21–31.

    CAS  PubMed  Google Scholar 

  39. Schneider U, Schwenk HU, Bornkamm G . Characterization of EBV-genome negative ‘null’ and ‘T’ cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer 1977; 19: 621–626.

    Article  CAS  PubMed  Google Scholar 

  40. Harmon JM, Norman MR, Fowlkes BJ, Thompson EB . Dexamethasone induces irreversible G1 arrest and death of a human lymphoid cell line. J Cell Physiol 1979; 98: 267–278.

    Article  CAS  PubMed  Google Scholar 

  41. Koeffler HP, Golde DW . Acute myelogenous leukemia: a human cell line responsive to colony-stimulating activity. Science 1978; 200: 1153–1154.

    Article  CAS  PubMed  Google Scholar 

  42. Sundstrom C, Nilsson K . Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer 1976; 17: 565–577.

    Article  CAS  PubMed  Google Scholar 

  43. Nicholson IC, Lenton KA, Little DJ, Decorso T, Lee FT, Scott AM et al. Construction and characterisation of a functional CD19 specific single chain Fv fragment for immunotherapy of B lineage leukaemia and lymphoma. Mol Immunol 1997; 34: 1157–1165.

    Article  CAS  PubMed  Google Scholar 

  44. Warrens AN, Jones MD, Lechler RI . Splicing by overlap extension by PCR using asymmetric amplification: an improved technique for the generation of hybrid proteins of immunological interest. Gene 1997; 186: 29–35.

    Article  CAS  PubMed  Google Scholar 

  45. Nishigaki H, Ito C, Manabe A, Kumagai M, Coustan-Smith E, Yanishevski Y et al. Prevalence and growth characteristics of malignant stem cells in B-lineage acute lymphoblastic leukemia. Blood 1997; 89: 3735–3744.

    CAS  PubMed  Google Scholar 

  46. Suzuki T, Coustan-Smith E, Mihara K, Campana D . Signals mediated by FcgammaRIIA suppress the growth of B-lineage acute lymphoblastic leukemia cells. Leukemia 2002; 16: 1276–1284.

    Article  CAS  PubMed  Google Scholar 

  47. Ito C, Tecchio C, Coustan-Smith E, Suzuki T, Behm FG, Raimondi SC et al. The antifungal antibiotic clotrimazole alters calcium homeostasis of leukemic lymphoblasts and induces apoptosis. Leukemia 2002; 16: 1344–1352.

    Article  CAS  PubMed  Google Scholar 

  48. Mihara K, Imai C, Coustan-Smith E, Dome JS, Dominici M, Vanin E et al. Development and functional characterization of human bone marrow mesenchymal cells immortalized by enforced expression of telomerase. Br J Haematol 2003; 120: 846–849.

    Article  CAS  PubMed  Google Scholar 

  49. Manabe A, Coustan-Smith E, Behm FG, Raimondi SC, Campana D . Bone marrow-derived stromal cells prevent apoptotic cell death in B-lineage acute lymphoblastic leukemia. Blood 1992; 79: 2370–2377.

    CAS  PubMed  Google Scholar 

  50. Campana D, Manabe A, Evans WE . Stroma-supported immunocytometric assay (SIA): a novel method for testing the sensitivity of acute lymphoblastic leukemia cells to cytotoxic drugs. Leukemia 1993; 7: 482–488.

    CAS  PubMed  Google Scholar 

  51. Ito C, Kumagai M, Manabe A, Coustan-Smith E, Raimondi SC, Behm FG et al. Hyperdiploid acute lymphoblastic leukemia with 51 to 65 chromosomes: a distinct biological entity with a marked propensity to undergo apoptosis. Blood 1999; 93: 315–320.

    CAS  PubMed  Google Scholar 

  52. Srivannaboon K, Shanafelt AB, Todisco E, Forte CP, Behm FG, Raimondi SC et al. Interleukin-4 variant (BAY 36-1677) selectively induces apoptosis in acute lymphoblastic leukemia cells. Blood 2001; 97: 752–758.

    Article  CAS  PubMed  Google Scholar 

  53. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30: 42–48.

    Article  PubMed  Google Scholar 

  54. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101: 3722–3729.

    Article  CAS  PubMed  Google Scholar 

  55. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O . Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003; 57: 11–20.

    Article  CAS  PubMed  Google Scholar 

  56. Li Y, Hellstrom KE, Newby SA, Chen L . Costimulation by CD48 and B7-1 induces immunity against poorly immunogenic tumors. J Exp Med 1996; 183: 639–644.

    Article  CAS  PubMed  Google Scholar 

  57. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 1995; 333: 1038–1044.

    Article  CAS  PubMed  Google Scholar 

  58. Rooney CM, Smith CA, Ng CY, Loftin S, Li C, Krance RA et al. Use of gene-modified virus-specific T lymphocytes to control Epstein–Barr-virus-related lymphoproliferation. Lancet 1995; 345: 9–13.

    Article  CAS  PubMed  Google Scholar 

  59. MacCorkle RA, Freeman KW, Spencer DM . Synthetic activation of caspases: artificial death switches. Proc Natl Acad Sci USA 1998; 95: 3655–3660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marktel S, Magnani Z, Ciceri F, Cazzaniga S, Riddell SR, Traversari C et al. Immunologic potential of donor lymphocytes expressing a suicide gene for early immune reconstitution after hematopoietic T-cell-depleted stem cell transplantation. Blood 2003; 101: 1290–1298.

    Article  CAS  PubMed  Google Scholar 

  61. Introna M, Barbui AM, Bambacioni F, Casati C, Gaipa G, Borleri G et al. Genetic modification of human T cells with CD20: a strategy to purify and lyse transduced cells with anti-CD20 antibodies. Hum Gene Ther 2000; 11: 611–620.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Elio Vanin and the St Jude Vector Development and Production Shared Resource for retroviral vectors, and Geoffrey Neale for the human spleen cDNA library. This work was supported by Grants CA58297 and CA21765 from the National Cancer Institute, by a Center of Excellence grant from the State of Tennessee, and by the American Lebanese Syrian Associated Charities (ALSAC). Ching-Hon Pui is the FM Kirby Clinical Research Professor of the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Campana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imai, C., Mihara, K., Andreansky, M. et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18, 676–684 (2004). https://doi.org/10.1038/sj.leu.2403302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403302

Keywords

This article is cited by

Search

Quick links