Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Molecular Targets For Therapy (MTT)
  • Published:

Molecular Targets for Therapy (MTT)

The synthetic peptide PFWT disrupts AF4–AF9 protein complexes and induces apoptosis in t(4;11) leukemia cells

Abstract

The MLL gene at chromosome band 11q23 is commonly involved in reciprocal translocations detected in acute leukemias. A number of experiments show that the resulting MLL fusion genes directly contribute to leukemogenesis. Among the many known MLL fusion partners, AF4 is relatively common, particularly in acute lymphoblastic leukemia in infants. The AF4 protein interacts with the product of another gene, AF9, which is also fused to MLL in acute leukemias. Based on mapping studies of the AF9-binding domain of AF4, we have developed a peptide, designated PFWT, which disrupts the AF4–AF9 interaction in vitro and in vivo. We provide evidence that this peptide is able to inhibit the proliferation of leukemia cells with t(4;11) chromosomal translocations expressing MLL–AF4 fusion genes. Further, we show that this inhibition is mediated through apoptosis. Importantly, the peptide does not affect the proliferative capacity of hematopoietic progenitor cells. Our findings indicate that the AF4–AF9 protein complex is a promising new target for leukemia therapy and that the PFWT peptide may serve as a lead compound for drug development.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ . Altered Hox gene expression and segmental identity in Mll-mutant mice. Nature 1995; 378: 505–508.

    Article  CAS  PubMed  Google Scholar 

  2. Yu BD, Hanson RD, Hess JL, Horning SE, Korsmeyer SJ . MLL, a mammalian trithorax group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc Natl Acad Sci USA 1998; 95: 10632–10636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hess JL, Yu BD, Li B, Hanson R, Korsmeyer SJ . Defects in yolk sac hematopoiesis in Mll-Null embryos. Blood 1997; 90: 1799–1806.

    CAS  PubMed  Google Scholar 

  4. Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002; 10: 1107–1117.

    Article  CAS  PubMed  Google Scholar 

  5. Rowley JD . The critical role of chromosome translocations in human leukemias. Annu Rev Genet 1998; 32: 495–519.

    Article  CAS  PubMed  Google Scholar 

  6. Li Q, Frestedt JL, Kersey JH . AF4 encodes a ubiquitous protein that in both native and MLL–AF4 fusion types localizes to subnuclear compartments. Blood 1998; 92: 3841–3847.

    CAS  PubMed  Google Scholar 

  7. Ayton PM, Cleary ML . Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001; 20: 5695–5707.

    Article  CAS  PubMed  Google Scholar 

  8. So CW, Cleary ML . MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function. Blood 2003; 101: 633–639.

    Article  CAS  PubMed  Google Scholar 

  9. Zeisig BB, Schreiner S, Garcia-Cuellar MP, Slany RK . Transcriptional activation is a key function encoded by MLL fusion partners. Leukemia 2003; 17: 359–365.

    Article  CAS  PubMed  Google Scholar 

  10. Felix CA, Lange BJ, Chessells JM . Pediatric acute lymphoblastic leukemia: challenges and controversies in 2000. Hematology (Am Soc Hematol Educ Program) 2000, 285–302.

  11. Pui CH, Chessells JM, Camitta B, Baruchel A, Biondi A, Boyett JM et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia 2003; 17: 700–706.

    Article  CAS  PubMed  Google Scholar 

  12. Slany RK, Lavau C, Cleary ML . The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX. Mol Cell Biol 1998; 18: 122–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Isnard P, Coré N, Naquet P, Djabali M . Altered lymphoid development in mice deficient for the mAF4 proto-oncogene. Blood 2000; 96: 705–710.

    CAS  PubMed  Google Scholar 

  14. Collins EC, Appert A, Ariza-McNaughton L, Pannell R, Yamada Y, Rabbitts TH . Mouse Af9 is a controller of embryo patterning, like Mll, whose human homologue fuses with AF9 after chromosomal translocation in leukemia. Mol Cell Biol 2002; 22: 7313–7324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Doty RT, Vanasse GJ, Disteche CM, Willerford DM . The leukemia-associated gene Mlltl/ENL: characterization of a murine homolog and demonstration of an essential role in embryonic development. Blood Cells Mol Dis 2002; 28: 407–417.

    Article  PubMed  Google Scholar 

  16. Erfurth F, Hemenway CS, de Erkenez AC, Domer PH . MLL fusion partners AF4 and AF9 interact at subnuclear foci. Leukemia 2004; 18: 92–102.

    Article  CAS  PubMed  Google Scholar 

  17. Srinivasan RS, de Erkenez AC, Hemenway CS . The mixed lineage leukemia fusion partner AF9 binds specific isoforms of the BCL-6 corepressor. Oncogene 2003; 22: 3395–3406.

    Article  CAS  PubMed  Google Scholar 

  18. Hemenway CS, de Erkenez AC, Gould GC . The polycomb protein MPc3 interacts with AF9, and MLL fusion partner in t(9;11)(p22;q23) acute leukemias. Oncogene 2001; 20: 3798–3805.

    Article  CAS  PubMed  Google Scholar 

  19. Domer PH, Fakharzadeh SS, Chen C, Jockel J, Johansen L, Silverman GA et al. Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL–AF4 fusion product. Proc Natl Acad Sci USA 1993; 90: 7884–7888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Taki T, Kano H, Taniwaki M, Sako M, Yanagisawa M, Hayashi Y . AF5q31, a newly identified AF4-related gene, is fused to MLL in infant acute lymphoblastic leukemia with ins(5;11)(q31;q13q23). Proc Natl Acad Sci USA 1999; 96: 14535–14540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. von Bergh AR, Beverloo HB, Rombout P, van Wering ER, van Weel MH, Beverstock GC et al. LAF4, an AF4-related gene, is fused to MLL in infant acute lymphoblastic leukemia. Genes Chromosomes Cancer 2002; 35: 92–96.

    Article  CAS  PubMed  Google Scholar 

  22. Derossi D, Joliot AH, Chassaing G, Prochiantz A . The third helix of the antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994; 269: 10444–10450.

    CAS  PubMed  Google Scholar 

  23. Stong RC, Korsmeyer SJ, Parkin JL, Arthur DC, Kersey JH . Human acute leukemia cell line with the t(4;11) chromosomal rearrangement exhibits B lineage and monocytic characteristics. Blood 1985; 65: 21–31.

    CAS  PubMed  Google Scholar 

  24. Lange B, Valtieri M, Santoli D, Caracciolo D, Mavilio F, Gemperlein I et al. Growth factor requirements of childhood acute leukemia: establishment of GM-CSF-dependent cell lines. Blood 1987; 70: 192–199.

    CAS  PubMed  Google Scholar 

  25. Cohen A, Grunberger T, Vanek W, Dube ID, Doherty PJ, Letarte M et al. Constitutive expression and role in growth regulation of interleukin-1 and multiple cytokine receptors in a biphenotype leukemia cell line. Blood 1991; 78: 94–102.

    CAS  PubMed  Google Scholar 

  26. Minowada J, Onuma T, Moore GE . Rosette-forming human lymphoid cell lines. I. Establishment and evidence for origin of thymus-derived lymphocytes. J Natl Cancer Inst 1972; 49: 891–895.

    CAS  PubMed  Google Scholar 

  27. Koziner B, Stavnezer J, Al-Katib A . Surface immunoglobulin light-chain expression by the ‘common’ ALL cell line REH. Clin Immunol Immunopathol 1985; 37: 135–141.

    Article  CAS  PubMed  Google Scholar 

  28. Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K . Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 1980; 26: 171–176.

    Article  CAS  PubMed  Google Scholar 

  29. Kersey JH, Wang D, Oberto M . Resistance of t(4;11)(MLL–AF4 fusion gene) leukemias to stress-induced cell death: possible mechanisms for extensive extramedullary accumulation of cells and poor prognosis. Leukemia 1998; 12: 1561–1564.

    Article  CAS  PubMed  Google Scholar 

  30. Dorrie J, Schuh W, Keil A, Bongards E, Greil J, Fey GH et al. Regulation of CD95 expression and CD95-mediated cell death by interferon-gamma in acute lymphoblastic leukemia with chromosomal translocation t(4;11). Leukemia 1999; 13: 1539–1547.

    Article  CAS  PubMed  Google Scholar 

  31. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH . Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 1994; 84: 1415–1420.

    CAS  PubMed  Google Scholar 

  32. Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 2003; 278: 585–590.

    Article  CAS  PubMed  Google Scholar 

  33. Felix C, Lange BJ . Leukemia in infants. Oncologist 1999; 4: 225–240.

    CAS  PubMed  Google Scholar 

  34. Reaman GH, Sposto R, Sensel MG, Lange BJ, Feusner JH, Heerema NA et al. Treatment outcome and prognostic factors for infants with acute lymphoblastic leukemia treated on two consecutive trials of the Children's Cancer Group. J Clin Oncol 1999; 17: 445–455.

    Article  CAS  PubMed  Google Scholar 

  35. Biondi A, Cimino G, Pieters R, Pui CH . Biological and therapeutic aspects of infant leukemia. Blood 2000; 96: 24–33.

    CAS  PubMed  Google Scholar 

  36. Chessells JM, Harrison CJ, Kempski H, Webb DK, Wheatley K, Hann IM et al. Clinical features, cytogenetics and outcome in acute lymphoblastic and myeloid leukaemia of infancy: report from the MRC Childhood leukaemia working party. Leukemia 2002; 16: 776–784.

    Article  CAS  PubMed  Google Scholar 

  37. Pui CH, Gaynon PS, Boyett JM, Chessells JM, Baruchel A, Kamps W et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 2002; 359: 1909–1915.

    Article  PubMed  Google Scholar 

  38. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  PubMed  Google Scholar 

  39. Armstrong SA, Kung AL, Mabon ME, Silverman LB, Stam RW, Den Boer ML et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 2003; 3: 173–183.

    Article  CAS  PubMed  Google Scholar 

  40. Domer PH, Fakharzadeh SS, Chen C, Jockel J, Johansen L, Silverman GA et al. Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL–AF4 fusion product. Proc Natl Acad Sci USA 1993; 90: 7884–7888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rubnitz JE, Morrissey J, Savage PA, Cleary ML . ENL, the gene fused with HRX in t(11;19) leukemias, encodes a nuclear protein with transcriptional activation potential in lymphoid and myeloid cells. Blood 1994; 84: 1747–1752.

    CAS  PubMed  Google Scholar 

  42. Gecz J, Gedeon AK, Sutherland GR, Mulley JC . Identification of the gene FMR2 associated with FRAXE mental retardation. Nat Genet 1996; 13: 105–108.

    Article  CAS  PubMed  Google Scholar 

  43. Gu Y, Shen Y, Gibbs R, Nelson DL . Identification of FMR2, a novel gene associated with the FRAXE CCG repeat and CpG island. Nat Genet 1996; 13: 109–113.

    Article  CAS  PubMed  Google Scholar 

  44. Ma C, Staudt LM . LAF-4 encodes a lymphoid nuclear protein with transactivation potential that is homologous to AF-4, the gene fused to MLL in t(4;11) leukemias. Blood 1996; 87: 734–745.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Melvin Freedman and Akira Morimoto for leukemia cell lines developed in their laboratories. Alan Tucker and Sherry Price provided valuable technical advice. This work was supported by the National Institutes of Health (CA 78318), the National Childhood Cancer Foundation (CA 13539; Subcontract 8018), the Ladies Leukemia League, and by developmental funds of the Tulane Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C S Hemenway.

Additional information

b>Supplementary Information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasan, R., Nesbit, J., Marrero, L. et al. The synthetic peptide PFWT disrupts AF4–AF9 protein complexes and induces apoptosis in t(4;11) leukemia cells. Leukemia 18, 1364–1372 (2004). https://doi.org/10.1038/sj.leu.2403415

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403415

Keywords

This article is cited by

Search

Quick links