Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Biotechnical Methods Section BTS
  • Published:

Bio-Technical Methods Section

RNA-based gene transfer for adult stem cells and T cells

Abstract

Electroporation of mRNA has become an established method for gene transfer into dendritic cells for immunotherapeutic purposes. However, many more cell types and applications might benefit from an efficient mRNA-based gene transfer method. In this study, we investigated the potential of mRNA-based gene transfer to induce short-term transgene expression in adult stem cells and activated T cells, based on electroporation with mRNA encoding the enhanced green fluorescent protein. The results show efficient transgene expression in CD34-positive hematopoietic progenitor cells (35%), in in vitro cultured mesenchymal cells (90%) and in PHA-stimulated T cells (50%). Next to presentation of gene transfer results, potential applications of mRNA-based gene transfer in stem cells and T cells are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Sullenger BA, Gilboa E . Emerging clinical applications of RNA. Nature 2002; 418: 252–258.

    Article  CAS  Google Scholar 

  2. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348: 255–256.

    Article  Google Scholar 

  3. Marshall E . Gene therapy death prompts review of adenovirus vector. Science 1999; 286: 2244–2245.

    Article  CAS  Google Scholar 

  4. Van Tendeloo VF, Ponsaerts P, Lardon F, Nijs G, Lenjou M, Van Broeckhoven C et al. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 2001; 98: 49–56.

    Article  CAS  Google Scholar 

  5. Ponsaerts P, Van Tendeloo VF, Berneman ZN . Cancer immunotherapy using RNA-loaded dendritic cells. Clin Exp Immunol 2003; 134: 378–384.

    Article  CAS  Google Scholar 

  6. Saeboe-Larssen S, Fossberg E, Gaudernack G . mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT). J Immunol Methods 2002; 259: 191–203.

    Article  CAS  Google Scholar 

  7. Chen ZZ, Van Bockstaele DR, Buyssens N, Hendrics D, De MI, Vanhoof G et al. Stromal populations and fibrosis in human long-term bone marrow cultures. Leukemia 1991; 5: 772–781.

    CAS  PubMed  Google Scholar 

  8. Miller G, Lipman M . Release of infectious Epstein–Barr virus by transformed marmoset leukocytes. Proc Natl Acad Sci USA 1973; 70: 190–194.

    Article  CAS  Google Scholar 

  9. Savoldo B, Huls MH, Liu Z, Okamura T, Volk HD, Reinke P et al. Autologous Epstein–Barr virus (EBV)-specific cytotoxic T cells for the treatment of persistent active EBV infection. Blood 2002; 100: 4059–4066.

    Article  CAS  Google Scholar 

  10. Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E . Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 1998; 16: 364–369.

    Article  CAS  Google Scholar 

  11. Ponsaerts P, Van Tendeloo VF, Cools N, Van Driessche A, Lardon F, Nijs G et al. mRNA-electroporated mature dendritic cells retain transgene expression, phenotypical properties and stimulatory capacity after cryopreservation. Leukemia 2002; 16: 1324–1330.

    Article  CAS  Google Scholar 

  12. Van Tendeloo VF, Willems R, Ponsaerts P, Lenjou M, Nijs G, Vanhove M et al. High-level transgene expression in primary human T lymphocytes and adult bone marrow CD34+ cells via electroporation-mediated gene delivery. Gene Therapy 2000; 7: 1431–1437.

    Article  CAS  Google Scholar 

  13. Van Tendeloo VF, Van Broeckhoven C, Berneman ZN . Gene therapy: principles and applications to hematopoietic cells. Leukemia 2001; 15: 523–544.

    Article  CAS  Google Scholar 

  14. Pfeifer A, Verma IM . Gene therapy: promises and problems. Annu Rev Genomics Hum Genet 2001; 2: 177–211.

    Article  CAS  Google Scholar 

  15. Van Tendeloo VF, Van Broeckhoven C, Berneman ZN . Gene-based cancer vaccines: an ex vivo approach. Leukemia 2001; 15: 545–558.

    Article  CAS  Google Scholar 

  16. Muller MR, Tsakou G, Grunebach F, Schmidt SM, Brossart P . Induction of chronic lymphocytic leukemia (CLL)-specific CD4- and CD8-mediated T-cell responses using RNA-transfected dendritic cells. Blood 2004; 103: 1763–1769.

    Article  Google Scholar 

  17. Srour EF, Jetmore A, Wolber FM, Plett PA, Abonour R, Yoder MC et al. Homing, cell cycle kinetics and fate of transplanted hematopoietic stem cells. Leukemia 2001; 15: 1681–1684.

    Article  CAS  Google Scholar 

  18. Tocci A, Forte L . Mesenchymal stem cell: use and perspectives. Hematol J 2003; 4: 92–96.

    Article  Google Scholar 

  19. Brun AC, Fan X, Bjornsson JM, Humphries RK, Karlsson S . Enforced adenoviral vector-mediated expression of HOXB4 in human umbilical cord blood CD34+ cells promotes myeloid differentiation but not proliferation. Mol Ther 2003; 8: 618–628.

    Article  CAS  Google Scholar 

  20. Svedberg H, Richter J, Gullberg U . Forced expression of the Wilms tumor 1 (WT1) gene inhibits proliferation of human hematopoietic CD34(+) progenitor cells. Leukemia 2001; 15: 1914–1922.

    Article  CAS  Google Scholar 

  21. Lou J, Xu F, Merkel K, Manske P . Gene therapy: adenovirus-mediated human bone morphogenetic protein-2 gene transfer induces mesenchymal progenitor cell proliferation and differentiation in vitro and bone formation in vivo. J Orthop Res 1999; 17: 43–50.

    Article  CAS  Google Scholar 

  22. Tsuda H, Wada T, Ito Y, Uchida H, Dehari H, Nakamura K et al. Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber-mutant adenoviral vector. Mol Ther 2003; 7: 354–365.

    Article  CAS  Google Scholar 

  23. Herndon TM, Juang YT, Solomou EE, Rothwell SW, Gourley MF, Tsokos GC . Direct transfer of p65 into T lymphocytes from systemic lupus erythematosus patients leads to increased levels of interleukin-2 promoter activity. Clin Immunol 2002; 103: 145–153.

    Article  CAS  Google Scholar 

  24. Lai W, Chang CH, Farber DL . Gene transfection and expression in resting and activated murine CD4 T cell subsets. J Immunol Methods 2003; 282: 93–102.

    Article  CAS  Google Scholar 

  25. Rufer N, Migliaccio M, Antonchuk J, Humphries RK, Roosnek E, Lansdorp PM . Transfer of the human telomerase reverse transcriptase (TERT) gene into T lymphocytes results in extension of replicative potential. Blood 2001; 98: 597–603.

    Article  CAS  Google Scholar 

  26. Schreurs MW, Scholten KB, Kueter EW, Ruizendaal JJ, Meijer CJ, Hooijberg E . In vitro generation and life span extension of human papillomavirus type 16-specific, healthy donor-derived CTL clones. J Immunol 2003; 171: 2912–2921.

    Article  CAS  Google Scholar 

  27. Zheng WP, Zhao Q, Zhao X, Li B, Hubank M, Schatz DG et al. Up-regulation of Hlx in immature Th cells induces IFN-gamma expression. J Immunol 2004; 172: 114–122.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant No. G.0313.01 of the Fund for Scientific Research – Flanders, Belgium (FWO-Vlaanderen), by a grant of the Scientific Committee of the Fortis Bank (FB) Verzekeringen-financed Cancer Research and by a grant of the Belgian Federation against Cancer (BFK). We also acknowledge support from Grant No. 7.0004.03 (Levenslijn) of the FWO-Vlaanderen. VFIVT is a postdoctoral fellow of the FWO-Vlaanderen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Ponsaerts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smits, E., Ponsaerts, P., Lenjou, M. et al. RNA-based gene transfer for adult stem cells and T cells. Leukemia 18, 1898–1902 (2004). https://doi.org/10.1038/sj.leu.2403463

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403463

Keywords

This article is cited by

Search

Quick links