Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Deregulated expression of fat and muscle genes in B-cell chronic lymphocytic leukemia with high lipoprotein lipase expression

Abstract

Lipoprotein lipase (LPL) is a prognostic marker in B-cell chronic lymphocytic leukemia (B-CLL) related to immunoglobulin VH gene (IgVH)mutational status. We determined gene expression profiles using Affymetrix U133A GeneChips in two groups of B-CLLs selected for either high (‘LPL+’, n=10) or low (‘LPL−’, n=10) LPL mRNA expression. Selected genes were verified by real-time PCR in an extended patient cohort (n=42). A total of 111 genes discriminated LPL+ from LPL− B-CLLs. Of these, the top three genes associated with time to first treatment were Septin10, DMD and Gravin (P0.01). The relationship of LPL+ and LPL− B-CLL gene expression signatures to 52 tissues was statistically analyzed. The LPL+ B-CLL expression signature, represented by 64 genes was significantly related to fat, muscle and PB dendritic cells (P<0.001). Exploration of microarray data to define functional alterations related to the biology of LPL+ CLL identified two functional modules, fatty acid degradation and MTA3 signaling, as being altered with higher statistical significance. Our data show that LPL+ B-CLL cells have not only acquired gene expression changes in fat and muscle-associated genes but also in functional pathways related to fatty acid degradation and signaling which may ultimately influence CLL biology and clinical outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 2001; 194: 1639–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Falt S, Merup M, Tobin G, Thunberg U, Gahrton G, Rosenquist R et al. Distinctive gene expression pattern in VH3-21 utilizing B-cell chronic lymphocytic leukemia. Blood 2005; 106: 681–689.

    Article  PubMed  Google Scholar 

  3. Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 2001; 194: 1625–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haslinger C, Schweifer N, Stilgenbauer S, Dohner H, Lichter P, Kraut N et al. Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status. J Clin Oncol 2004; 22: 3937–3949.

    Article  CAS  PubMed  Google Scholar 

  5. Schroers R, Griesinger F, Trumper L, Haase D, Kulle B, Klein-Hitpass L et al. Combined analysis of ZAP-70 and CD38 expression as a predictor of disease progression in B-cell chronic lymphocytic leukemia. Leukemia 2005; 19: 750–758.

    Article  CAS  PubMed  Google Scholar 

  6. Ferrer A, Ollila J, Tobin G, Nagy B, Thunberg U, Aalto Y et al. Different gene expression in immunoglobulin-mutated and immunoglobulin-unmutated forms of chronic lymphocytic leukemia. Cancer Genet Cytogenet 2004; 153: 69–72.

    Article  CAS  PubMed  Google Scholar 

  7. Gaiger A, Heintel D, Jager U . Novel molecular diagnostic and therapeutic targets in chronic lymphocytic leukaemia. Eur J Clin Invest 2004; 34 (Suppl 2): 25–30.

    Article  CAS  PubMed  Google Scholar 

  8. Davis RE, Staudt LM . Molecular diagnosis of lymphoid malignancies by gene expression profiling. Curr Opin Hematol 2002; 9: 333–338.

    Article  PubMed  Google Scholar 

  9. Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE, Henrickson SE et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003; 101: 4944–4951.

    Article  CAS  PubMed  Google Scholar 

  10. Vasconcelos Y, De VJ, Vallat L, Reme T, Lalanne AI, Wanherdrick K et al. Gene expression profiling of chronic lymphocytic leukemia can discriminate cases with stable disease and mutated Ig genes from those with progressive disease and unmutated Ig genes. Leukemia 2005; 19: 2002–2005.

    Article  CAS  PubMed  Google Scholar 

  11. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815.

    Article  CAS  PubMed  Google Scholar 

  12. Stevenson FK, Caligaris-Cappio F . Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood 2004; 103: 4389–4395.

    Article  CAS  PubMed  Google Scholar 

  13. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  PubMed  Google Scholar 

  14. Dohner H, Stilgenbauer S, James MR, Benner A, Weilguni T, Bentz M et al. 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood 1997; 89: 2516–2522.

    CAS  PubMed  Google Scholar 

  15. Hamblin TJ, Orchard JA, Ibbotson RE, Davis Z, Thomas PW, Stevenson FK et al. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood 2002; 99: 1023–1029.

    Article  CAS  PubMed  Google Scholar 

  16. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847.

    CAS  PubMed  Google Scholar 

  17. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004; 101: 11755–11760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen CZ, Lodish HF . MicroRNAs as regulators of mammalian hematopoiesis. Semin Immunol 2005; 17: 155–165.

    Article  CAS  PubMed  Google Scholar 

  19. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

    CAS  PubMed  Google Scholar 

  20. Oscier DG, Gardiner AC, Mould SJ, Glide S, Davis ZA, Ibbotson RE et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood 2002; 100: 1177–1184.

    CAS  PubMed  Google Scholar 

  21. Krober A, Seiler T, Benner A, Bullinger L, Bruckle E, Lichter P et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 2002; 100: 1410–1416.

    CAS  PubMed  Google Scholar 

  22. Vasconcelos Y, Davi F, Levy V, Oppezzo P, Magnac C, Michel A et al. Binet's staging system and VH genes are independent but complementary prognostic indicators in chronic lymphocytic leukemia. J Clin Oncol 2003; 21: 3928–3932.

    Article  CAS  PubMed  Google Scholar 

  23. Thunberg U, Johnson A, Roos G, Thorn I, Tobin G, Sallstrom J et al. CD38 expression is a poor predictor for VH gene mutational status and prognosis in chronic lymphocytic leukemia. Blood 2001; 97: 1892–1894.

    Article  CAS  PubMed  Google Scholar 

  24. Stilgenbauer S, Bullinger L, Lichter P, Dohner H . Genetics of chronic lymphocytic leukemia: genomic aberrations and V(H) gene mutation status in pathogenesis and clinical course. Leukemia 2002; 16: 993–1007.

    Article  CAS  PubMed  Google Scholar 

  25. Guarini A, Gaidano G, Mauro FR, Capello D, Mancini F, De Propris MS et al. Chronic lymphocytic leukemia patients with highly stable and indolent disease show distinctive phenotypic and genotypic features. Blood 2003; 102: 1035–1041.

    Article  CAS  PubMed  Google Scholar 

  26. Chen L, Widhopf G, Huynh L, Rassenti L, Rai KR, Weiss A et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood 2002; 100: 4609–4614.

    Article  CAS  PubMed  Google Scholar 

  27. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003; 348: 1764–1775.

    Article  CAS  PubMed  Google Scholar 

  28. Rai KR, Chiorazzi N . Determining the clinical course and outcome in chronic lymphocytic leukemia. N Engl J Med 2003; 348: 1797–1799.

    Article  PubMed  Google Scholar 

  29. Durig J, Nuckel H, Cremer M, Fuhrer A, Halfmeyer K, Fandrey J et al. ZAP-70 expression is a prognostic factor in chronic lymphocytic leukemia. Leukemia 2003; 17: 2426–2434.

    Article  CAS  PubMed  Google Scholar 

  30. Orchard JA, Ibbotson RE, Davis Z, Wiestner A, Rosenwald A, Thomas PW et al. ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. Lancet 2004; 363: 105–111.

    Article  CAS  PubMed  Google Scholar 

  31. Rassenti LZ, Huynh L, Toy TL, Chen L, Keating MJ, Gribben JG et al. ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 2004; 351: 893–901.

    Article  CAS  PubMed  Google Scholar 

  32. Heintel D, Kienle D, Shehata M, Krober A, Kroemer E, Schwarzinger I et al. High expression of lipoprotein lipase in poor risk B-cell chronic lymphocytic leukaemia. Leukemia 2005; 19: 1216–1223.

    Article  CAS  PubMed  Google Scholar 

  33. Oppezzo P, Vasconcelos Y, Settegrana C, Jeannel D, Vuillier F, Legarff-Tavernier M et al. The LPL/ADAM29 expression ratio is a novel prognosis indicator in chronic lymphocytic leukemia. Blood 2005; 106: 650–657.

    Article  CAS  PubMed  Google Scholar 

  34. Mead JR, Irvine SA, Ramji DP . Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med 2002; 80: 753–769.

    Article  CAS  PubMed  Google Scholar 

  35. Merkel M, Kako Y, Radner H, Cho IS, Ramasamy R, Brunzell JD et al. Catalytically inactive lipoprotein lipase expression in muscle of transgenic mice increases very low density lipoprotein uptake: direct evidence that lipoprotein lipase bridging occurs in vivo. Proc Natl Acad Sci USA 1998; 95: 13841–13846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mamputu JC, Renier G . Differentiation of human monocytes to monocyte-derived macrophages is associated with increased lipoprotein lipase-induced tumor necrosis factor-alpha expression and production: a process involving cell surface proteoglycans and protein kinase C. Arterioscler Thromb Vasc Biol 1999; 19: 1405–1411.

    Article  CAS  PubMed  Google Scholar 

  37. Strauss JG, Frank S, Kratky D, Hammerle G, Hrzenjak A, Knipping G et al. Adenovirus-mediated rescue of lipoprotein lipase-deficient mice. Lipolysis of triglyceride-rich lipoproteins is essential for high density lipoprotein maturation in mice. J Biol Chem 2001; 276: 36083–36090.

    Article  CAS  PubMed  Google Scholar 

  38. Ghia P, Caligaris-Cappio F . The indispensable role of microenvironment in the natural history of low-grade B-cell neoplasms. Adv Cancer Res 2000; 79: 157–173.

    Article  CAS  PubMed  Google Scholar 

  39. Wu G, Brouckaert P, Olivecrona T . Rapid downregulation of adipose tissue lipoprotein lipase activity on food deprivation: evidence that TNF-alpha is involved. Am J Physiol Endocrinol Metab 2004; 286: E711–E717.

    Article  CAS  PubMed  Google Scholar 

  40. Ziouzenkova O, Asatryan L, Sahady D, Orasanu G, Perrey S, Cutak B et al. Dual roles for lipolysis and oxidation in peroxisome proliferation-activator receptor responses to electronegative low density lipoprotein. J Biol Chem 2003; 278: 39874–39881.

    Article  CAS  PubMed  Google Scholar 

  41. Bilban M, Ghaffari-Tabrizi N, Hintermann E, Bauer S, Molzer S, Zoratti C et al. Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. J Cell Sci 2004; 117 (Part 8): 1319–1328.

    Article  CAS  PubMed  Google Scholar 

  42. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP . Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003; 31: e15.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25: 25–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kienle DL, Korz C, Hosch B, Benner A, Mertens D, Habermann A et al. Evidence for distinct pathomechanisms in genetic subgroups of chronic lymphocytic leukemia revealed by quantitative expression analysis of cell cycle, activation, and apoptosis-associated genes. J Clin Oncol 2005; 23: 3780–3792.

    Article  CAS  PubMed  Google Scholar 

  47. Hall PA, Russell SE . The pathobiology of the septin gene family. J Pathol 2004; 204: 489–505.

    Article  CAS  PubMed  Google Scholar 

  48. Martinho RG, Castel S, Urena J, Fernandez-Borja M, Makiya R, Olivecrona G et al. Ligand binding to heparan sulfate proteoglycans induces their aggregation and distribution along actin cytoskeleton. Mol Biol Cell 1996; 7: 1771–1788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fernandez-Borja M, Bellido D, Vilella E, Olivecrona G, Vilaro S . Lipoprotein lipase-mediated uptake of lipoprotein in human fibroblasts: evidence for an LDL receptor-independent internalization pathway. J Lipid Res 1996; 37: 464–481.

    CAS  PubMed  Google Scholar 

  50. Fernandez-Borja M, Bellido D, Makiya R, David G, Olivecrona G, Reina M et al. Actin cytoskeleton of fibroblasts organizes surface proteoglycans that bind basic fibroblast growth factor and lipoprotein lipase. Cell Motil Cytoskeleton 1995; 30: 89–107.

    Article  CAS  PubMed  Google Scholar 

  51. Tanaka M, Tanaka T, Kijima H, Itoh J, Matsuda T, Hori S et al. Characterization of tissue- and cell-type-specific expression of a novel human septin family gene, Bradeion. Biochem Biophys Res Commun 2001; 286: 547–553.

    Article  CAS  PubMed  Google Scholar 

  52. Scott M, Hyland PL, McGregor G, Hillan KJ, Russell SE, Hall PA . Multimodality expression profiling shows SEPT9 to be overexpressed in a wide range of human tumours. Oncogene 2005; 24: 4688–4700.

    Article  CAS  PubMed  Google Scholar 

  53. Zheng Z, Venkatapathy S, Rao G, Harrington CA . Expression profiling of B cell chronic lymphocytic leukemia suggests deficient CD1-mediated immunity, polarized cytokine response, altered adhesion and increased intracellular protein transport and processing of leukemic cells. Leukemia 2002; 16: 2429–2437.

    Article  CAS  PubMed  Google Scholar 

  54. Gomes LI, Esteves GH, Carvalho AF, Cristo EB, Hirata Jr R, Martins WK et al. Expression profile of malignant and nonmalignant lesions of esophagus and stomach: differential activity of functional modules related to inflammation and lipid metabolism. Cancer Res 2005; 65: 7127–7136.

    Article  CAS  PubMed  Google Scholar 

  55. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433: 769–773.

    Article  CAS  PubMed  Google Scholar 

  56. Wang HW, Trotter MW, Lagos D, Bourboulia D, Henderson S, Makinen T et al. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet 2004; 36: 687–693.

    Article  CAS  PubMed  Google Scholar 

  57. Pawlak G, Helfman DM . Cytoskeletal changes in cell transformation and tumorigenesis. Curr Opin Genet Dev 2001; 11: 41–47.

    Article  CAS  PubMed  Google Scholar 

  58. Streubel B, Chott A, Huber D, Exner M, Jager U, Wagner O et al. Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 2004; 351: 250–259.

    Article  CAS  PubMed  Google Scholar 

  59. Staudt LM . Cancer: negative feedback for B cells. Nature 2004; 431: 919–920.

    Article  CAS  PubMed  Google Scholar 

  60. Fujita N, Jaye DL, Geigerman C, Akyildiz A, Mooney MR, Boss JM et al. MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell 2004; 119: 75–86.

    Article  CAS  PubMed  Google Scholar 

  61. Hall AM, Vickers MA, McLeod E, Barker RN . Rh autoantigen presentation to helper T cells in chronic lymphocytic leukemia by malignant B cells. Blood 2005; 105: 2007–2015.

    Article  CAS  PubMed  Google Scholar 

  62. Reichlin M, Fesmire J, Quintero-Del-Rio AI, Wolfson-Reichlin M . Autoantibodies to lipoprotein lipase and dyslipidemia in systemic lupus erythematosus. Arthritis Rheum 2002; 46: 2957–2963.

    Article  CAS  PubMed  Google Scholar 

  63. Sasaki H, Kunimatsu M, Fujii Y, Yamakawa Y, Fukai I, Kiriyama M et al. Autoantibody to gravin is expressed more strongly in younger and nonthymomatous patients with myasthenia gravis. Surg Today 2001; 31: 1036–1037.

    Article  CAS  PubMed  Google Scholar 

  64. van't Veer MB, Brooijmans AM, Langerak AW, Verhaaf B, Goudswaard CS, Graveland WJ et al. The predictive value of lipoprotein lipase for survival in chronic lymphocytic leukemia. Haematologica 2006; 91: 56–63.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are greatly indebted to G.Kostner and R. Zechner for helpful discussions. This study is supported by grants from the Austrian National Bank (Grant no. 9964), the Austrian Human Genome Project (‘C.h.i.l.d’) (UJ), the Center of Molecular Medicine (CeMM) of the Austrian Academy of Sciences (no. 20010 to UJ and no. 20030 to WP), Corixa Co., Seattle (AG), DFG (STI 296/1), Sander (2001.04.02) and Fresenius (CLL4) (DK, AK, HD, SS)

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to U Jäger.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilban, M., Heintel, D., Scharl, T. et al. Deregulated expression of fat and muscle genes in B-cell chronic lymphocytic leukemia with high lipoprotein lipase expression. Leukemia 20, 1080–1088 (2006). https://doi.org/10.1038/sj.leu.2404220

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404220

Keywords

This article is cited by

Search

Quick links