Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells

Abstract

Tumors contain a fraction of cancer stem cells that maintain the propagation of the disease. The CD34+CD38− cells, isolated from acute myeloid leukemia (AML), were shown to be enriched leukemic stem cells (LSC). We isolated the CD34+CD38− cell fraction from AML and compared their gene expression profiles to the CD34+CD38+ cell fraction, using microarrays. We found 409 genes that were at least twofold over- or underexpressed between the two cell populations. These include underexpression of DNA repair, signal transduction and cell cycle genes, consistent with the relative quiescence of stem cells, and chromosomal aberrations and mutations of leukemic cells. Comparison of the LSC expression data to that of normal hematopoietic stem cells (HSC) revealed that 34% of the modulated genes are shared by both LSC and HSC, supporting the suggestion that the LSC originated within the HSC progenitors. We focused on the Notch pathway since Jagged-2, a Notch ligand was found to be overexpressed in the LSC samples. We show that DAPT, an inhibitor of gamma-secretase, a protease that is involved in Jagged and Notch signaling, inhibits LSC growth in colony formation assays. Identification of additional genes that regulate LSC self-renewal may provide new targets for therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Passegue E, Jamieson CH, Ailles LE, Weissman IL . Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 2003; 100 (Suppl 1): 11842–11849.

    Article  CAS  Google Scholar 

  2. Hope KJ, Jin L, Dick JE . Human acute myeloid leukemia stem cells. Arch Med Res 2003; 34: 507–514.

    Article  CAS  Google Scholar 

  3. Pardal R, Clarke MF, Morrison SJ . Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003; 3: 895–902.

    Article  CAS  Google Scholar 

  4. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  Google Scholar 

  5. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  Google Scholar 

  6. Singh SK, Clarke ID, Hide T, Dirks PB . Cancer stem cells in nervous system tumors. Oncogene 2004; 23: 7267–7273.

    Article  CAS  Google Scholar 

  7. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  Google Scholar 

  8. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  Google Scholar 

  9. Rombouts WJ, Martens AC, Ploemacher RE . Identification of variables determining the engraftment potential of human acute myeloid leukemia in the immunodeficient NOD/SCID human chimera model. Leukemia 2000; 14: 889–897.

    Article  CAS  Google Scholar 

  10. van Rhenen A, Feller N, Kelder A, Westra AH, Rombouts E, Zweegman S et al. High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin Cancer Res 2005; 11: 6520–6527.

    Article  CAS  Google Scholar 

  11. Till JE, McCulloch EA . A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961; 14: 213–222.

    Article  CAS  Google Scholar 

  12. Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL . Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003; 17: 3029–3035.

    Article  CAS  Google Scholar 

  13. Taipale J, Beachy PA . The Hedgehog and Wnt signalling pathways in cancer. Nature 2001; 411: 349–354.

    Article  CAS  Google Scholar 

  14. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423: 302–305.

    Article  CAS  Google Scholar 

  15. Costello RT, Mallet F, Gaugler B, Sainty D, Arnoulet C, Gastaut JA et al. Human acute myeloid leukemia CD34+/CD38− progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res 2000; 60: 4403–4411.

    CAS  Google Scholar 

  16. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc 1995; 57: 289–300.

    Google Scholar 

  17. Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003; 4: P3.

    Article  Google Scholar 

  18. Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D . GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics 1998; 14: 656–664.

    Article  CAS  Google Scholar 

  19. Tsafrir D, Tsafrir I, Ein-Dor L, Zuk O, Notterman DA, Domany E . Sorting points into neighborhoods (SPIN): data analysis and visualization by ordering distance matrices. Bioinformatics 2005; 21: 2301–2308.

    Article  CAS  Google Scholar 

  20. Georgantas RW, Tanadve V, Malehorn M, Heimfeld S, Chen C, Carr L et al. Microarray and serial analysis of gene expression analyses identify known and novel transcripts overexpressed in hematopoietic stem cells. Cancer Res 2004; 64: 4434–4441.

    Article  CAS  Google Scholar 

  21. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR . A stem cell molecular signature. Science 2002; 298: 601–604.

    Article  CAS  Google Scholar 

  22. Toren A, Bielorai B, Jacob-Hirsch J, Fisher T, Kreiser D, Moran O et al. CD133-positive hematopoietic stem cell ‘stemness’ genes contain many genes mutated or abnormally expressed in leukemia. Stem Cells 2005; 23: 1142–1153.

    Article  CAS  Google Scholar 

  23. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM . Systematic determination of genetic network architecture. Nat Genet 1999; 22: 281–285.

    Article  CAS  Google Scholar 

  24. Guasch G, Fuchs E . Mice in the world of stem cell biology. Nat Genet 2005; 37: 1201–1206.

    Article  CAS  Google Scholar 

  25. Karanu FN, Murdoch B, Gallacher L, Wu DM, Koremoto M, Sakano S et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med 2000; 192: 1365–1372.

    Article  CAS  Google Scholar 

  26. Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 2000; 6: 1278–1281.

    Article  CAS  Google Scholar 

  27. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005; 6: 314–322.

    Article  CAS  Google Scholar 

  28. O'Neil J, Calvo J, McKenna K, Krishnamoorthy V, Aster JC, Bassing CH et al. Activating Notch1 mutations in mouse models of T-ALL. Blood 2006; 107: 781–785.

    Article  CAS  Google Scholar 

  29. Tohda S, Kogoshi H, Murakami N, Sakano S, Nara N . Diverse effects of the Notch ligands Jagged1 and Delta1 on the growth and differentiation of primary acute myeloblastic leukemia cells. Exp Hematol 2005; 33: 558–563.

    Article  CAS  Google Scholar 

  30. van Es JH, Clevers H . Notch and Wnt inhibitors as potential new drugs for intestinal neoplastic disease. Trends Mol Med 2005; 11: 496–502.

    Article  CAS  Google Scholar 

  31. Dovey HF, John V, Anderson JP, Chen LZ, de Saint Andrieu P, Fang LY et al. Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 2001; 76: 173–181.

    Article  CAS  Google Scholar 

  32. Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 2000; 14: 1777–1784.

    Article  CAS  Google Scholar 

  33. Huntly BJ, Gilliland DG . Blasts from the past: new lessons in stem cell biology from chronic myelogenous leukemia. Cancer Cell 2004; 6: 199–201.

    Article  CAS  Google Scholar 

  34. Terpstra W, Ploemacher RE, Prins A, van Lom K, Pouwels K, Wognum AW et al. Fluorouracil selectively spares acute myeloid leukemia cells with long-term growth abilities in immunodeficient mice and in culture. Blood 1996; 88: 1944–1950.

    CAS  PubMed  Google Scholar 

  35. Sjolund J, Manetopoulos C, Stockhausen MT, Axelson H . The Notch pathway in cancer: differentiation gone awry. Eur J Cancer 2005; 41: 2620–2629.

    Article  Google Scholar 

  36. Ascano JM, Beverly LJ, Capobianco AJ . The C-terminal PDZ-ligand of JAGGED1 is essential for cellular transformation. J Biol Chem 2003; 278: 8771–8779.

    Article  CAS  Google Scholar 

  37. Weng AP, Nam Y, Wolfe MS, Pear WS, Griffin JD, Blacklow SC et al. Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol Cell Biol 2003; 23: 655–664.

    Article  CAS  Google Scholar 

  38. Weng AP, Ferrando AA, Lee W, Morris JPT, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  Google Scholar 

  39. Huff CA, Matsui W, Smith BD, Jones RJ . The paradox of response and survival in cancer therapeutics. Blood 2006; 107: 431–434.

    Article  CAS  Google Scholar 

  40. Angstreich GR, Matsui W, Huff CA, Vala MS, Barber J, Hawkins AL et al. Effects of imatinib and interferon on primitive chronic myeloid leukaemia progenitors. Br J Haematol 2005; 130: 373–381.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Kahn Family Foundation for their generous support. This research was partially supported by the Wolfson Family Charitable Trust on Tumor Cell Diversity, by the Israel Academy of Science, and by grants from Ruth & Allen Zeigler for Stem Cell Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Givol.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gal, H., Amariglio, N., Trakhtenbrot, L. et al. Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia 20, 2147–2154 (2006). https://doi.org/10.1038/sj.leu.2404401

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404401

Keywords

This article is cited by

Search

Quick links