Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Disorders

Molecular signature of CD34+ hematopoietic stem and progenitor cells of patients with CML in chronic phase

Abstract

In this study, we provide a molecular signature of highly enriched CD34+ cells from bone marrow of untreated patients with chronic myelogenous leukemia (CML) in chronic phase in comparison with normal CD34+ cells using microarrays covering 8746 genes. Expression data reflected several BCR-ABL-induced effects in primary CML progenitors, such as transcriptional activation of the classical mitogen-activated protein kinase pathway and the phosphoinositide-3 kinase/AKT pathway as well as downregulation of the proapoptotic gene IRF8. Moreover, novel transcriptional changes in comparison with normal CD34+ cells were identified. These include upregulation of genes involved in the transforming growth factorβ pathway, fetal hemoglobin genes, leptin receptor, sorcin, tissue inhibitor of metalloproteinase 1, the neuroepithelial cell transforming gene 1 and downregulation of selenoprotein P. Additionally, genes associated with early hematopoietic stem cells (HSC) and leukemogenesis such as HoxA9 and MEIS1 were transcriptionally activated. Differential expression of differentiation-associated genes suggested an altered composition of the CD34+ cell population in CML. This was confirmed by subset analyses of chronic phase CML CD34+ cells showing an increase of the proportion of megakaryocyte-erythroid progenitors, whereas the proportion of HSC and granulocyte–macrophage progenitors was decreased in CML. In conclusion, our results give novel insights into the biology of CML and could provide the basis for identification of new therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Faderl S, Talpaz M, Estrov Z, O'Brien S, Kurzrock R, Kantarjian HM . The biology of chronic myeloid leukemia. N Engl J Med 1999; 341: 164–172.

    Article  CAS  PubMed  Google Scholar 

  2. Daley GQ, Van Etten RA, Baltimore D . Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830.

    Article  CAS  PubMed  Google Scholar 

  3. Deininger MW, Goldman JM, Melo JV . The molecular biology of chronic myeloid leukemia. Blood 2000; 96: 3343–3356.

    CAS  PubMed  Google Scholar 

  4. Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF . Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature 1987; 328: 342–344.

    Article  CAS  PubMed  Google Scholar 

  5. Salesse S, Verfaillie CM . Mechanisms underlying abnormal trafficking and expansion of malignant progenitors in CML: BCR/ABL-induced defects in integrin function in CML. Oncogene 2002; 21: 8605–8611.

    Article  CAS  PubMed  Google Scholar 

  6. Marley SB, Gordon MY . Chronic myeloid leukaemia: stem cell derived but progenitor cell driven. Clin Sci (London) 2005; 109: 13–25.

    Article  CAS  Google Scholar 

  7. Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 2003; 101: 4701–4707.

    Article  CAS  PubMed  Google Scholar 

  8. Kronenwett R, Butterweck U, Steidl U, Kliszewski S, Neumann F, Bork S et al. Distinct molecular phenotype of malignant CD34(+) hematopoietic stem and progenitor cells in chronic myelogenous leukemia. Oncogene 2005; 24: 5313–5324.

    Article  CAS  PubMed  Google Scholar 

  9. Nowicki MO, Pawlowski P, Fischer T, Hess G, Pawlowski T, Skorski T . Chronic myelogenous leukemia molecular signature. Oncogene 2003; 22: 3952–3963.

    Article  CAS  PubMed  Google Scholar 

  10. Ohmine K, Ota J, Ueda M, Ueno S, Yoshida K, Yamashita Y et al. Characterization of stage progression in chronic myeloid leukemia by DNA microarray with purified hematopoietic stem cells. Oncogene 2001; 20: 8249–8257.

    Article  CAS  PubMed  Google Scholar 

  11. Frank O, Brors B, Fabarius A, Li L, Haak M, Merk S et al. Gene expression signature of primary imatinib-resistant chronic myeloid leukemia patients. Leukemia 2006; 20: 1400–1407.

    Article  CAS  PubMed  Google Scholar 

  12. McLean LA, Gathmann I, Capdeville R, Polymeropoulos MH, Dressman M . Pharmacogenomic analysis of cytogenetic response in chronic myeloid leukemia patients treated with imatinib. Clin Cancer Res 2004; 10: 155–165.

    Article  CAS  PubMed  Google Scholar 

  13. Neumann F, Teutsch N, Kliszewski S, Bork S, Steidl U, Brors B et al. Gene expression profiling of Philadelphia chromosome (Ph)-negative CD34+ hematopoietic stem and progenitor cells of patients with Ph-positive CML in major molecular remission during therapy with imatinib. Leukemia 2005; 19: 458–460.

    Article  CAS  PubMed  Google Scholar 

  14. Villuendas R, Steegmann JL, Pollan M, Tracey L, Granda A, Fernandez-Ruiz E et al. Identification of genes involved in imatinib resistance in CML: a gene-expression profiling approach. Leukemia 2006; 20: 1047–1054.

    Article  CAS  PubMed  Google Scholar 

  15. Yong AS, Szydlo RM, Goldman JM, Apperley JF, Melo JV . Molecular profiling of CD34+ cells identifies low expression of CD7, along with high expression of proteinase 3 or elastase, as predictors of longer survival in patients with CML. Blood 2006; 107: 205–212.

    Article  CAS  PubMed  Google Scholar 

  16. Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA 2006; 103: 2794–2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng C, Li L, Haak M, Brors B, Frank O, Giehl M et al. Gene expression profiling of CD34+ cells identifies a molecular signature of chronic myeloid leukemia blast crisis. Leukemia 2006; 20: 1028–1034.

    Article  CAS  PubMed  Google Scholar 

  18. Steidl U, Kronenwett R, Rohr UP, Fenk R, Kliszewski S, Maercker C et al. Gene expression profiling identifies significant differences between the molecular phenotypes of bone marrow-derived and circulating human CD34+ hematopoietic stem cells. Blood 2002; 99: 2037–2044.

    Article  CAS  PubMed  Google Scholar 

  19. Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M . Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 2002; 18 Suppl 1: S96–S104.

    Article  PubMed  Google Scholar 

  20. Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kronenwett R, Graf T, Nedbal W, Weber M, Steidl U, Rohr UP et al. Inhibition of angiogenesis in vitro by alphav integrin-directed antisense oligonucleotides. Cancer Gene Ther 2002; 9: 587–596.

    Article  CAS  PubMed  Google Scholar 

  22. Manz MG, Miyamoto T, Akashi K, Weissman IL . Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci USA 2002; 99: 11872–11877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 2001; 29: 365–371.

    Article  CAS  PubMed  Google Scholar 

  24. Staal FJ, Cario G, Cazzaniga G, Haferlach T, Heuser M, Hofmann WK et al. Consensus guidelines for microarray gene expression analyses in leukemia from three European leukemia networks. Leukemia 2006; 20: 1385–1392.

    Article  CAS  PubMed  Google Scholar 

  25. Ng YY, van Kessel B, Lokhorst HM, Baert MR, van den Burg CM, Bloem AC et al. Gene-expression profiling of CD34+ cells from various hematopoietic stem-cell sources reveals functional differences in stem-cell activity. J Leukocyte Biol 2004; 75: 314–323.

    Article  CAS  PubMed  Google Scholar 

  26. Cortez D, Reuther G, Pendergast AM . The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells. Oncogene 1997; 15: 2333–2342.

    Article  CAS  PubMed  Google Scholar 

  27. Raitano AB, Halpern JR, Hambuch TM, Sawyers CL . The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci USA 1995; 92: 11746–11750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi CS, Tuscano JM, Witte ON, Kehrl JH . GCKR links the Bcr-Abl oncogene and Ras to the stress-activated protein kinase pathway. Blood 1999; 93: 1338–1345.

    CAS  PubMed  Google Scholar 

  29. Sawyers CL, Callahan W, Witte ON . Dominant negative MYC blocks transformation by ABL oncogenes. Cell 1992; 70: 901–910.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu J, Emerson SG . Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 2002; 21: 3295–3313.

    Article  CAS  PubMed  Google Scholar 

  31. Notari M, Neviani P, Santhanam R, Blaser BW, Chang JS, Galietta A et al. A MAPK/HNRPK pathway controls BCR/ABL oncogenic potential by regulating MYC mRNA translation. Blood 2006; 107: 2507–2516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Horita M, Andreu EJ, Benito A, Arbona C, Sanz C, Benet I et al. Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J Exp Med 2000; 191: 977–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD . STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood 2000; 95: 2118–2125.

    CAS  PubMed  Google Scholar 

  34. Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 1997; 16: 6151–6159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Skorski T, Kanakaraj P, Nieborowska-Skorska M, Ratajczak MZ, Wen SC, Zon G et al. Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 1995; 86: 726–736.

    CAS  PubMed  Google Scholar 

  36. Andreu EJ, Lledo E, Poch E, Ivorra C, Albero MP, Martinez-Climent JA et al. BCR-ABL induces the expression of Skp2 through the PI3 K pathway to promote p27Kip1 degradation and proliferation of chronic myelogenous leukemia cells. Cancer Res 2005; 65: 3264–3272.

    Article  CAS  PubMed  Google Scholar 

  37. Williams CD, Linch DC, Watts MJ, Thomas NS . Characterization of cell cycle status and E2F complexes in mobilized CD34+ cells before and after cytokine stimulation. Blood 1997; 90: 194–203.

    CAS  PubMed  Google Scholar 

  38. Wu CL, Classon M, Dyson N, Harlow E . Expression of dominant-negative mutant DP-1 blocks cell cycle progression in G1. Mol Cell Biol 1996; 16: 3698–3706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Primo D, Flores J, Quijano S, Sanchez ML, Sarasquete ME, Pino-Montes J et al. Impact of BCR/ABL gene expression on the proliferative rate of different subpopulations of haematopoietic cells in chronic myeloid leukaemia. Br J Haematol 2006; 135: 43–51.

    Article  PubMed  Google Scholar 

  40. Hao SX, Ren R . Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder. Mol Cell Biol 2000; 20: 1149–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Holtschke T, Lohler J, Kanno Y, Fehr T, Giese N, Rosenbauer F et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 1996; 87: 307–317.

    Article  CAS  PubMed  Google Scholar 

  42. Burchert A, Cai D, Hofbauer LC, Samuelsson MK, Slater EP, Duyster J et al. Interferon consensus sequence binding protein (ICSBP; IRF-8) antagonizes BCR/ABL and down-regulates bcl-2. Blood 2004; 103: 3480–3489.

    Article  CAS  PubMed  Google Scholar 

  43. Uemura N, Griffin JD . The adapter protein Crkl links Cbl to C3G after integrin ligation and enhances cell migration. J Biol Chem 1999; 274: 37525–37532.

    Article  CAS  PubMed  Google Scholar 

  44. Bazzoni G, Carlesso N, Griffin JD, Hemler ME . Bcr/Abl expression stimulates integrin function in hematopoietic cell lines. J Clin Invest 1996; 98: 521–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nakata Y, Tomkowicz B, Gewirtz AM, Ptasznik A . Integrin inhibition through Lyn-dependent cross talk from CXCR4 chemokine receptors in normal human CD34+ marrow cells. Blood 2006; 107: 4234–4239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 2003; 101: 690–698.

    Article  CAS  PubMed  Google Scholar 

  47. McWhirter JR, Galasso DL, Wang JY . A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 1993; 13: 7587–7595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wertheim JA, Perera SA, Hammer DA, Ren R, Boettiger D, Pear WS . Localization of BCR-ABL to F-actin regulates cell adhesion but does not attenuate CML development. Blood 2003; 102: 2220–2228.

    Article  CAS  PubMed  Google Scholar 

  49. Tapon N, Hall A . Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 1997; 9: 86–92.

    Article  CAS  PubMed  Google Scholar 

  50. Adams GB, Scadden DT . The hematopoietic stem cell in its place. Nat Immunol 2006; 7: 333–337.

    Article  CAS  PubMed  Google Scholar 

  51. Durig J, Rosenthal C, Elmaagacli A, Heyworth C, Halfmeyer K, Kasper C et al. Biological effects of stroma-derived factor-1 alpha on normal and CML CD34+ haemopoietic cells. Leukemia 2000; 14: 1652–1660.

    Article  CAS  PubMed  Google Scholar 

  52. Peled A, Hardan I, Trakhtenbrot L, Gur E, Magid M, Darash-Yahana M et al. Immature leukemic CD34+CXCR4+ cells from CML patients have lower integrin-dependent migration and adhesion in response to the chemokine SDF-1. Stem Cells 2002; 20: 259–266.

    Article  CAS  PubMed  Google Scholar 

  53. Murohashi I, Endho K, Nishida S, Yoshida S, Jinnai I, Bessho M et al. Differential effects of TGF-beta 1 on normal and leukemic human hematopoietic cell proliferation. Exp Hematol 1995; 23: 970–977.

    CAS  PubMed  Google Scholar 

  54. Bhanu NV, Trice TA, Lee YT, Gantt NM, Oneal P, Schwartz JD et al. A sustained and pancellular reversal of gamma-globin gene silencing in adult human erythroid precursor cells. Blood 2005; 105: 387–393.

    Article  CAS  PubMed  Google Scholar 

  55. Bohmer RM, Campbell TA, Bianchi DW . Selectively increased growth of fetal hemoglobin-expressing adult erythroid progenitors after brief treatment of early progenitors with transforming growth factor beta. Blood 2000; 95: 2967–2974.

    CAS  PubMed  Google Scholar 

  56. Shen X, Li J, Hu PP, Waddell D, Zhang J, Wang XF . The activity of guanine exchange factor NET1 is essential for transforming growth factor-beta-mediated stress fiber formation. J Biol Chem 2001; 276: 15362–15368.

    Article  CAS  PubMed  Google Scholar 

  57. Qin H, Carr HS, Wu X, Muallem D, Tran NH, Frost JA . Characterization of the biochemical and transforming properties of the neuroepithelial transforming protein 1. J Biol Chem 2005; 280: 7603–7613.

    Article  CAS  PubMed  Google Scholar 

  58. Alberts AS, Treisman R . Activation of RhoA and SAPK/JNK signalling pathways by the RhoA-specific exchange factor mNET1. EMBO J 1998; 17: 4075–4085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pineault N, Helgason CD, Lawrence HJ, Humphries RK . Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 2002; 30: 49–57.

    Article  CAS  PubMed  Google Scholar 

  60. Storms RW, Trujillo AP, Springer JB, Shah L, Colvin OM, Ludeman SM et al. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 1999; 96: 9118–9123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang GG, Pasillas MP, Kamps MP . Persistent transactivation by meis1 replaces hox function in myeloid leukemogenesis models: evidence for co-occupancy of meis1-pbx and hox-pbx complexes on promoters of leukemia-associated genes. Mol Cell Biol 2006; 26: 3902–3916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fruhbeck G . Intracellular signalling pathways activated by leptin. Biochem J 2006; 393: 7–20.

    Article  CAS  PubMed  Google Scholar 

  63. Gainsford T, Willson TA, Metcalf D, Handman E, McFarlane C, Ng A et al. Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proc Natl Acad Sci USA 1996; 93: 14564–14568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Konopleva M, Mikhail A, Estrov Z, Zhao S, Harris D, Sanchez-Williams G et al. Expression and function of leptin receptor isoforms in myeloid leukemia and myelodysplastic syndromes: proliferative and anti-apoptotic activities. Blood 1999; 93: 1668–1676.

    CAS  PubMed  Google Scholar 

  65. Nakao T, Hino M, Yamane T, Nishizawa Y, Morii H, Tatsumi N . Expression of the leptin receptor in human leukaemic blast cells. Br J Haematol 1998; 102: 740–745.

    Article  CAS  PubMed  Google Scholar 

  66. Paraskevas KI, Liapis CD, Mikhailidis DP . Leptin: a promising therapeutic target with pleiotropic action besides body weight regulation. Curr Drug Targets 2006; 7: 761–771.

    Article  CAS  PubMed  Google Scholar 

  67. Durkin ME, Avner MR, Huh CG, Yuan BZ, Thorgeirsson SS, Popescu NC . DLC-1, a Rho GTPase-activating protein with tumor suppressor function, is essential for embryonic development. FEBS Lett 2005; 579: 1191–1196.

    Article  CAS  PubMed  Google Scholar 

  68. Janowska-Wieczorek A, Marquez LA, Matsuzaki A, Hashmi HR, Larratt LM, Boshkov LM et al. Expression of matrix metalloproteinases (MMP-2 and -9) and tissue inhibitors of metalloproteinases (TIMP-1 and -2) in acute myelogenous leukaemia blasts: comparison with normal bone marrow cells. Br J Haematol 1999; 105: 402–411.

    Article  CAS  PubMed  Google Scholar 

  69. Lambert E, Boudot C, Kadri Z, Soula-Rothhut M, Sowa ML, Mayeux P et al. Tissue inhibitor of metalloproteinases-1 signalling pathway leading to erythroid cell survival. Biochem J 2003; 372: 767–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dai Z, Quackenbush RC, Courtney KD, Grove M, Cortez D, Reuther GW et al. Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent pathway. Genes Dev 1998; 12: 1415–1424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Malhotra KT, Malhotra K, Lubin BH, Kuypers FA . Identification and molecular characterization of acyl-CoA synthetase in human erythrocytes and erythroid precursors. Biochem J 1999; 344 (Part 1): 135–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pizer ES, Chrest FJ, DiGiuseppe JA, Han WF . Pharmacological inhibitors of mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor cell lines. Cancer Res 1998; 58: 4611–4615.

    CAS  PubMed  Google Scholar 

  73. Eaves AC, Eaves CJ . Abnormalities in the erythroid progenitor compartments in patients with chronic myelogenous leukemia (CML). Exp Hematol 1979; 7 Suppl 5: 65–75.

    PubMed  Google Scholar 

  74. Zermati Y, Fichelson S, Valensi F, Freyssinier JM, Rouyer-Fessard P, Cramer E et al. Transforming growth factor inhibits erythropoiesis by blocking proliferation and accelerating differentiation of erythroid progenitors. Exp Hematol 2000; 28: 885–894.

    Article  CAS  PubMed  Google Scholar 

  75. Eaves AC, Barnett MJ, Ponchio L, Cashman JD, Petzer AL, Eaves CJ . Differences between normal and CML stem cells: potential targets for clinical exploitation. Stem Cells 1998; 16 Suppl 1: 77–83.

    PubMed  Google Scholar 

Download references

Acknowledgements

Following financial supports are greatly appreciated: ED-B: Deutscher Akademischer Austauschdienst (DAAD), MR: Scholarship of Duesseldorf University, BB: National Genome Research Network (grant 01 GR 0450), SB: Leukämie Liga eV Düsseldorf, Forschungskommission der Medizinischen Fakultät Düsseldorf, AvH: Vienna Science and Technology Fund (WWTF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Kronenwett.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz-Blanco, E., Bruns, I., Neumann, F. et al. Molecular signature of CD34+ hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia 21, 494–504 (2007). https://doi.org/10.1038/sj.leu.2404549

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404549

Keywords

This article is cited by

Search

Quick links