Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis

Abstract

Two main pieces of neurobiological evidence are adduced to support an early neurodevelopmental component to schizophrenia. Firstly, an abnormal distribution of neurons, especially interstitial white matter neurons (IWMNs). Secondly, decreased expression of reelin, a key developmental signalling molecule. Although influential, neither result is wholly established, and a possible link between them has not been examined. We addressed both issues, in superior temporal cortex, in 12 subjects with schizophrenia and 14 controls. The distribution and density of IWMNs, immunostained with the neuronal marker NeuN, was increased in the superficial white matter in schizophrenia (+16%; P=0.03). IWMN density in deep white matter was unaffected. Using in situ hybridization, reelin mRNA was found to be expressed by many IWMNs, layer I neurons, and scattered interneurons. Superficial IWMNs (P=0.008) and layer I neurons (P=0.036) both expressed less reelin mRNA per cell in schizophrenia, with a trend for deep IWMNs (P=0.055). In conclusion, we replicated findings of increased IWMN density, and of decreased reelin expression, in schizophrenia. The loss of reelin reflects, at least partly, its decreased expression by IWMNs. These findings together support neurodevelopmental theories of the disorder, and indicate a link between reelin and IWMNs in this process, consistent with evidence from the heterozygous reeler mutant mouse. The alterations may contribute to the aberrant synaptic connectivity seen in schizophrenia. However, the functional implications of the abnormalities, as well as the mechanisms involved, remain to be fully elucidated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Benes FM, Davidson J, Bird ED . Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. Arch Gen Psychiatry 1986; 43: 31–35.

    CAS  PubMed  Google Scholar 

  2. Jakob H, Beckmann H . Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 1986; 65: 303–326.

    CAS  PubMed  Google Scholar 

  3. Murray RM, Lewis SW . Is schizophrenia a neurodevelopmental disorder. BMJ 1987; 295: 681–682.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Weinberger DR . Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44: 660–669.

    CAS  PubMed  Google Scholar 

  5. Weinberger DR . From neuropathology to neurodevelopment. Lancet 1995; 346: 552–557.

    CAS  PubMed  Google Scholar 

  6. Harrison PJ . Schizophrenia: a disorder of neurodevelopment? Curr Opin Neurobiol 1997; 7: 285–289.

    CAS  PubMed  Google Scholar 

  7. Lewis DA, Levitt P . Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 2002; 25: 409–432.

    CAS  PubMed  Google Scholar 

  8. Roberts GW . Schizophrenia: the cellular biology of a functional psychosis. Trends Neurosci 1990; 13: 207–211.

    CAS  PubMed  Google Scholar 

  9. Bloom FE . Advancing a neurodevelopmental origin for schizophrenia. Arch Gen Psychiatry 1993; 50: 224–227.

    CAS  PubMed  Google Scholar 

  10. Roberts GW, Harrison PJ . Gliosis and its implications for the disease process. In: Harrison PJ, Roberts GW (eds). The Neuropathology of Schizophrenia. Progress and Interpretation. Oxford University Press: Oxford, 2000, pp 137–150.

    Google Scholar 

  11. Chun JJM, Shatz CJ . Interstitial neurons of the adult neocortical white matter are the remnant of the early generated subplate neuron population. J Comp Neurol 1989; 282: 555–569.

    CAS  PubMed  Google Scholar 

  12. Kostovic I, Rakic P . Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol 1980; 9: 219–242.

    CAS  PubMed  Google Scholar 

  13. Kostovic I, Rakic P . Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 1990; 297: 441–470.

    CAS  PubMed  Google Scholar 

  14. Allendoerfer KL, Shatz CJ . The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu Rev Neurosci 1994; 17: 185–218.

    CAS  PubMed  Google Scholar 

  15. Hatten ME . Central nervous system neuronal migration. Annu Rev Neurosci 1999; 22: 511–539.

    CAS  PubMed  Google Scholar 

  16. Akbarian S, Bunney Jr WE, Potkin SG, Wigal SB, Hagman JO, Sandman C et al. Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry 1993; 50: 169–177.

    CAS  PubMed  Google Scholar 

  17. Akbarian S, Kim JJ, Potkin SG, Hetrick WP, Bunney Jr WE, Jones EG . Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psychiatry 1996; 53: 425–436.

    CAS  PubMed  Google Scholar 

  18. Anderson SA, Volk DW, Lewis DA . Increased density of microtubule associated protein 2-immunoreactive neurons in the prefrontal white matter of schizophrenic subjects. Schizophr Res 1996; 19: 111–119.

    CAS  PubMed  Google Scholar 

  19. Akbarian S, Viñuela A, Kim JJ, Potkin SG, Bunney Jr WE, Jones EG . Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiatry 1993; 50: 178–187.

    CAS  PubMed  Google Scholar 

  20. Kirkpatrick B, Conley R, Kakoyannis A, Reep RL, Roberts RC . Interstitial cells of the white matter in the inferior parietal cortex in schizophrenia: an unbiased cell-counting study. Synapse 1999; 34: 95–102.

    CAS  PubMed  Google Scholar 

  21. Harrison PJ . The neuropathology of schizophrenia — a critical review of the data and their interpretation. Brain 1999; 122: 593–624.

    PubMed  Google Scholar 

  22. Harrison PJ, Lewis DA . Neuropathology of schizophrenia. In: Hirsch SR, Weinberger D (eds). Schizophrenia, 2nd edn. Blackwells Science: Oxford, 2003, pp 310–325.

    Google Scholar 

  23. Hendry SHC, Jones EG, Emson PC . Morphology, distribution and synaptic relations of somatostatin- and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex. J Neurosci 1984; 4: 2497–2517.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Giguere M, Goldman-Rakic PS . Mediodorsal nucleus: areal, laminar and tangential distribution of afferents and efferents in the frontal lobes of rhesus monkey. J Comp Neurol 1988; 277: 95–213.

    Google Scholar 

  25. Schwark HD, Esteky H, Jones EG . Corticocortical connections of cat primary somatosensory cortex. Exp Brain Res 1992; 91: 425–434.

    CAS  PubMed  Google Scholar 

  26. Clancy B, Silva-Filho M, Friedlander MJ . Structure and projections of white matter neurons in the postnatal rat visual cortex. J Comp Neurol 2001; 434: 233–252.

    CAS  PubMed  Google Scholar 

  27. Beasley CL, Cotter DR, Everall IP . Density and distribution of white matter neurons in schizophrenia, bipolar disorder and major depressive disorder: no evidence for abnormalities of neuronal migration. Mol Psychiatry 2002; 7: 564–570.

    CAS  PubMed  Google Scholar 

  28. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG et al. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 1998; 95: 15718–15723.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fatemi SH, Earle JA, McMenomy T . Reduction in reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry 2000; 5: 654–663.

    CAS  PubMed  Google Scholar 

  30. Guidotti A, Auta J, Davis JM, Gerevini VD, Dwivedi Y, Grayson DR et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder—a postmortem brain study. Arch Gen Psychiatry 2000; 57: 1061–1069.

    CAS  PubMed  Google Scholar 

  31. Eastwood SL, Law AJ, Everall IP, Harrison PJ . The axonal chemorepellant semaphorin 3A is increased in the cerebellum in schizophrenia and may contribute to its synaptic pathology. Mol Psychiatry 2003; 8: 148–155.

    CAS  PubMed  Google Scholar 

  32. Knable MB, Torrey EF, Webster MJ, Bartko JJ . Multivariate analysis of prefrontal cortical data from the Stanley Foundation Neuropathology Consortium. Brain Res Bull 2001; 55: 651–659.

    CAS  PubMed  Google Scholar 

  33. Ogawa M, Miyata T, Nakajima K, Yagyu K, Seike M, Ikenaka K et al. The reeler gene-associated antigen on Cajal–Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 1995; 14: 899–912.

    CAS  PubMed  Google Scholar 

  34. Borrell V, Del Río JA, Alcántara S, Derer M, Martínez A, D'Arcangelo G et al. Reelin regulates the development and synaptogenesis of the layer-specific entorhino-hippocampal connections. J Neurosci 1999; 19: 1345–1358.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rice DS, Curran T . Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 2001; 24: 1005–1039.

    CAS  PubMed  Google Scholar 

  36. Nishikawa S, Goto S, Hamasaki T, Yamada K, Ushio Y . Involvement of reelin and Cajal–Retzius cells in the developmental formation of vertical columnar structures in the cerebral cortex: evidence from the study of mouse presubicular cortex. Cereb Cortex 2002; 12: 1024–1030.

    PubMed  Google Scholar 

  37. D'Arcangelo G, Miao G, Chen S-C, Soares HD, Morgan JI, Curran T . A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 1995; 374: 719–723.

    CAS  PubMed  Google Scholar 

  38. Meyer G, Goffinet AM . Prenatal development of reelin-immunoreactive neurons in the human neocortex. J Comp Neurol 1998; 397: 29–40.

    CAS  PubMed  Google Scholar 

  39. Meyer G, Schaaps JP, Moreau L, Goffinet AM . Embryonic and early fetal development of the human neocortex. J Neurosci 2000; 20: 1858–1868.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Quattrochi CC, Wannens F, Persico AM, Ciafré SA, D'Arcangelo G, Farace MG et al. Reelin is a serine protease of the extracellular matrix. J Biol Chem 2002; 277: 303–306.

    Google Scholar 

  41. Förster E, Tielsch A, Saum B, Weiss KH, Johanssen C, Graus-Porta D et al. Reelin, Disabled 1, and β1 integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc Natl Acad Sci USA 2002; 99: 13178–13183.

    PubMed  PubMed Central  Google Scholar 

  42. Fatemi SH . Reelin mutations in mouse and man: from reeler mouse to schizophrenia, mood disorders, autism and lissencephaly. Mol Psychiatry 2001; 6: 129–133.

    CAS  PubMed  Google Scholar 

  43. Lambert de Rouvroit C, Goffinet AM . The reeler mouse as a model of brain development. Adv Anat Embryol Cell Biol 1998; 150: 1–106.

    CAS  PubMed  Google Scholar 

  44. Costa E, Davis J, Grayson DR, Guidotti A, Pappas GD, Pesold C . Dendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability. Neurobiol Dis 2001; 8: 723–742.

    CAS  PubMed  Google Scholar 

  45. Liu WS, Pesold C, Rodriguez MA, Carboni G, Auta J, Lacor P et al. Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse. Proc Natl Acad Sci USA 2001; 98: 3477–3481.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ballmaier M, Zoli M, Leo G, Agnati LF, Spano P . Preferential alterations in the mesolimbic dopamine pathway of heterozygous reeler mice: an emerging animal-based model of schizophrenia. Eur J Neurosci 2002; 15: 1197–1205.

    PubMed  Google Scholar 

  47. Tueting P, Costa E, Dwivedi Y, Guidotti A, Impagnatiello F, Manev R et al. The phenotypic characteristics of heterozygous reeler mouse. Neuroreport 1999; 10: 1329–1334.

    CAS  PubMed  Google Scholar 

  48. Weeber EJ, Beffert U, Jones C, Christian JM, Förster E, Sweatt JD, Herz J . Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 2002; 277: 39944–39952.

    CAS  PubMed  Google Scholar 

  49. Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A et al. Reelin is preferentially expressed in neurons synthesizing γ-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci USA 1998; 95: 3221–3226.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Martínez-Cerdeño V, Clascá F . Reelin immunoreactivity in the adult neocortex: a comparative study in rodents, carnivores, and non-human primates. Brain Res Bull 2002; 57: 485–488.

    PubMed  Google Scholar 

  51. Eastwood SL, Harrison PJ . Hippocampal and cortical growth-associated protein-43 messenger RNA in schizophrenia. Neuroscience 1998; 86: 437–448.

    CAS  PubMed  Google Scholar 

  52. Wolf HK, Buslei R, Schmidt-Kastner R, Schmidt-Kastner PK, Pietsch T, Wiestler OD et al. NeuN: a useful marker for diagnostic histopathology. J Histochem Cytochem 1996; 44: 1167–1171.

    CAS  PubMed  Google Scholar 

  53. Riederer BM, Porchet R, Marugg RA, Binder LI . Solubility of cytoskeletal proteins in immunohistochemistry and the influence of fixation. J Histochem Cytochem 1994; 41: 609–616.

    Google Scholar 

  54. Benes FM, Lange N . Two-dimensional versus three-dimensional cell counting: a practical perspective. Trends Neurosci 2001; 24: 11–17.

    CAS  PubMed  Google Scholar 

  55. Rojiani AM, Emery JA, Anderson KJ, Massey JK . Distribution of heterotopic neurons in normal hemispheric white matter: a morphometric analysis. J Neuropathol Exp Neurol 1996; 55: 178–183.

    CAS  PubMed  Google Scholar 

  56. DeSilva U, D'Arcangelo G, Braden VV, Chen J, Mioa GG, Curran T, Green ED . The human reelin gene: isolation, sequencing, and mapping on chromosome 7. Genome Res 1997; 7: 157–164.

    CAS  PubMed  Google Scholar 

  57. Eastwood SL, Burnet PWJ, McDonald B, Clinton J, Harrison PJ . Synaptophysin gene expression in human brain: a quantitative in situ hybdridization and immunocytochemical study. Neuroscience 1994; 59: 881–892.

    CAS  PubMed  Google Scholar 

  58. Harrison PJ, Barton AJL, Najlerahim A, McDonald B, Pearson RCA . Regional and neuronal reductions of polyadenylated messenger RNA in Alzheimer's disease. Psychol Med 1991; 21: 855–866.

    CAS  PubMed  Google Scholar 

  59. Harrison PJ . The neuropathological effects of antipsychotic drugs. Schizophr Res 1999; 40: 87–99

    CAS  PubMed  Google Scholar 

  60. Harrison PJ, Kleinmnan JE . Methodological issues. In: Harrison PJ, Roberts GW (eds). The Neuropathology of Schizophrenia. Progress and Interpretation. Oxford University Press: Oxford, 2000, pp 339–350.

    Google Scholar 

  61. West MJ . Stereological methods for estimating the total number of neurons and synapses: Issues of precision and bias. Trends Neurosci 1999; 22: 51–61.

    CAS  PubMed  Google Scholar 

  62. Highley JR, McDonald B, Walker MA, Esiri MM, Crow TJ . Schizophrenia and temporal lobe asymmetry. A port-mortem stereological study of tissue volume. Br J Psychiatry 1999; 175: 127–134.

    CAS  PubMed  Google Scholar 

  63. Miller B, Sheppard AM, Bicknese AR, Pearlman AL . Chondroitin sulfate proteoglycans in the developing cerebral cortex: the distribution of neurocan distinguishes forming afferent and efferent axonal pathways. J Comp Neurol 1995; 355: 615–628.

    CAS  PubMed  Google Scholar 

  64. Aggoun-Aouaoui D, Kiper DC, Innocenti GM . Growth of callosal terminal arbors in primary visual areas of the cat. Eur J Neurosci 1996; 8: 1132–1148.

    CAS  PubMed  Google Scholar 

  65. Del Rio JA, Martinez A, Auladell C, Soriano E . Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages. Cereb Cortex 2000; 10: 784–801.

    CAS  PubMed  Google Scholar 

  66. Meyer G, Wahle P, Castaneyra-Perdomo A, Ferres-Torres R . Morphology of neurons in the white matter of the adult human neocortex. Exp Brain Res 1992; 88: 204–212.

    CAS  PubMed  Google Scholar 

  67. Smiley JF, Levey AI, Mesulam MM . Infracortical interstitial cells concurrently expressing m2-muscarinic receptors, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase in the human and monkey cerebral cortex. Neuroscience 1998; 84: 755–769.

    CAS  PubMed  Google Scholar 

  68. Liddle PF . Functional imaging — schizophrenia. Br Med Bull 1996; 52: 486–494.

    CAS  PubMed  Google Scholar 

  69. Lim KO, Hedehus M, Moseley M, De Crespigny A, Sullivan EV, Pfefferbaum A . Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch Gen Psychiatry 1999; 56: 367–374.

    CAS  PubMed  Google Scholar 

  70. Foong J, Symms MR, Barker GR, Maier M, Woermann FG, Miller DH, Ron MA . Neuropathological abnormalities in schizophrenia: evidence from magnetization transfer imaging. Brain 2001; 124: 882–892.

    CAS  PubMed  Google Scholar 

  71. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum J et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Uranova NA, Orlovskaya DD, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V, Rachmanova V . Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 2001; 55: 597–610.

    CAS  PubMed  Google Scholar 

  73. Mimmack ML, Ryan M, Baba H, Navarro-Ruiz J, Iritani S, Faull RLM et al. Gene expression analysis in schizophrenia: reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome 22. Proc Natl Acad Sci USA 2002; 99: 4680–4685.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Meyer G . Human neocortical development: the importance of embryonic and early fetal events. Neuroscientist 2001; 7: 303–313.

    CAS  PubMed  Google Scholar 

  75. Supèr H, Soriano E, Uylings HBM . The functions of the preplate in development and evolution of the neocortex and hippocampus. Brain Res Rev 1998; 27: 40–64.

    PubMed  Google Scholar 

  76. Aboitiz F . Evolution of isocortical organization. A tentative scenario including roles of reelin, p35/cdk5 and the subplate zone. Cereb Cortex 1999; 9: 655–661.

    CAS  PubMed  Google Scholar 

  77. Lewis DA . The human brain revisited: opportunities and challenges in postmortem studies of psychiatric disorders. Neuropsychopharmacology 2002; 26: 143–154.

    PubMed  Google Scholar 

  78. Lacor PN, Grayson DR, Auta J, Sugaya J, Costa E, Guidotti A . Reelin secretion from glutamatergic neurons in culture is independent from neurotransmitter regulation. Proc Natl Acad Sci USA 2000; 97: 3556–3561.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hadj-Sahraoui N, Frédéric F, Delhaye-Bouchaud N, Mariani J . Gender effect on Purkinje cell loss in the cerebellum of the heterozygous reeler mouse. J Neurogenet 1996; 11: 45–58.

    CAS  PubMed  Google Scholar 

  80. Witelson SF, Glezer II, Kigar DL . Women have greater density of neurons in posterior temporal cortex. J Neurosci 1995; 15: 3418–3428.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Vogeley K, Hobson T, Schneider-Axmann T, Honer WG, Bogerts B, Falkai P . Compartmental volumetry of the superior temporal gyrus reveals sex differences in schizophrenia — a postmortem study. Schizophr Res 1998; 31: 83–87.

    CAS  PubMed  Google Scholar 

  82. Eastwood SL, Cairns N, Harrison PJ . Synaptophysin gene expression in schizophrenia. Investigation of synaptic pathology in the cerebral cortex. Br J Psychiatry 2000; 176: 236–242.

    CAS  PubMed  Google Scholar 

  83. Narr K, Thompson P, Sharma T, Moussai J, Zoumalan C, Rayman J et al. Three-dimensional mapping of gyral shape and cortical surface asymmetries in schizophrenia: gender effects. Am J Psychiatry 2001; 158: 244–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Honer WG, Young C, Falkai P . Synaptic pathology. In: Harrison PJ, Roberts GW (eds). The Neuropathology of Schizophrenia. Progress and Interpretation. Oxford University Press: Oxford, 2000, pp 105–136.

    Google Scholar 

  85. McGlashan TH, Hoffman RE . Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 2000; 57: 637–648.

    CAS  PubMed  Google Scholar 

  86. Harrison PJ, Eastwood SL . Neuropathological studies of synaptic connectivity in the hippocampal formation in schizophrenia. Hippocampus 2001; 11: 508–519.

    CAS  PubMed  Google Scholar 

  87. Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE, Hourihane JO et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 2000; 26: 93–96.

    CAS  PubMed  Google Scholar 

  88. Haas CA, Dudeck O, Kirsch M, Huszka C, Kann G, Pollak S et al. Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci 2002; 22: 5797–5802.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Eriksson SH, Thom M, Heffernan J, Lin WR, Harding BN, Squier MV et al. Persistent reelin-expressing Cajal–Retzius cells in polymicrogyria. Brain 2001; 124: 1350–1361.

    CAS  PubMed  Google Scholar 

  90. Nijhawan D, Honarpour N, Wang XD . Apoptosis in neural development and disease. Annu Rev Neurosci 2000; 23: 73–87.

    CAS  PubMed  Google Scholar 

  91. Mehler MF, Gokhan S . Developmental mechanisms in the pathogenesis of neurodegenerative diseases. Prog Neurobiol 2001; 63: 337–363.

    CAS  PubMed  Google Scholar 

  92. DeLisi LE . Is schizophrenia a lifetime disorder of brain plasticity, growth and aging. Schizophr Res 1997; 23: 119–129.

    CAS  PubMed  Google Scholar 

  93. Lieberman JA . Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective. Biol Psychiatry 1999; 46: 729–739.

    CAS  PubMed  Google Scholar 

  94. Weinberger DR, McClure R . Neurotoxicity, neuroplasticity and magnetic resonance imaging morphometry. What is happening in the schizophrenic brain? Arch Gen Psychiatry 2002; 59: 553–558.

    PubMed  Google Scholar 

  95. Ringstedt T, Linnarsson S, Wagner J, Lendahl U, Kokaia Z, Arenas E et al. BDNF regulates reelin expression and Cajal–Retzius cell development in the cerebral cortex. Neuron 1998; 21: 305–315.

    CAS  PubMed  Google Scholar 

  96. Chen Y, Sharma RP, Costa RH, Costa E, Grayson DR . On the epigenetic regulation of the human reelin promoter. Nucleic Acids Res 2002; 30: 2930–2939.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Fatemi SH, Emamian ES, Kist D, Sidwell RW, Nakajima K, Akhter P et al. Defective corticogenesis and reduction in reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry 1999; 4: 145–154.

    CAS  PubMed  Google Scholar 

  98. Harrison PJ, Owen MJ . Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 2003; 361: 417–419.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SLE was recipient of the Margaret Temple Fellowship of the British Medical Association. Additional support was provided by a Centre award from the Stanley Medical Research Institute, and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S L Eastwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eastwood, S., Harrison, P. Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. Mol Psychiatry 8, 821–831 (2003). https://doi.org/10.1038/sj.mp.4001371

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001371

Keywords

This article is cited by

Search

Quick links